Національна академія наук України Інститут загальної та неорганічної хімії ім. В.І. Вернадського

> Кваліфікаційна наукова праця на правах рукопису

СУБОТІН ВЛАДИСЛАВ ВОЛОДИМИРОВИЧ

УДК 546.97.94.23.22.14.13

ДИСЕРТАЦІЯ

СИНТЕЗ, БУДОВА ТА ВЛАСТИВОСТІ КООРДИНАЦІЙНИХ ХАЛЬКОГЕНГАЛОГЕНІДНІХ СПОЛУК РЕНІЮ(IV,V)

02.00.01 – неорганічна хімія 10 – Природничі науки

102 — хімія

Подається на здобуття наукового ступеня кандидата хімічних наук

Дисертація містить результати власних досліджень. Використання ідей, результатів і текстів інших авторів мають посилання на відповідне джерело _______ В.В. Суботін Науковий керівник: Волков Сергій Васильович, академік НАН України, професор

АНОТАЦІЯ

Суботін В.В. Синтез, будова та властивості координаційних халькогенгалогенідних сполук ренію(IV,V)

Дисертація на здобуття наукового ступеня кандидата хімічних наук за спеціальністю 02.00.01 неорганічна хімія. – Інститут загальної та неорганічної хімії ім. В.І. Вернадського НАН України, м. Київ, 2019.

Дисертаційна робота присвячена дослідженню комплексоутворення у системі сполука ренію – рідке халькогенгалогенідне середовище з надлишком халькогену, для одержання нових гомо- та гетерохалькогенгалогенідних сполук металу, встановлення їх складу, будови та каталітичних властивостей.

Проведено детальне вивчення комплексоутворення при 100 та 200°С у 44 системах: на основі оксиду ренію(VII) Re₂O₇–Chal₂Hal₂, Re₂O₇–Chal–Chal₂Hal₂, Re₂O₇–Chal₂Hal₂, Re₂O₇–Chal₂Hal₂, Re₂O₇–Chal₂Hal₂, Re₂O₇–Chal₂Hal₂, Re₂O₇–Chal₂Hal₂, Re₂O₇–Chal₂Hal₂, HReO₄–Chal₂Hal₂, HReO₄–Chal₂Hal₂, HReO₄–Chal₂Hal₂, HReO₄–Chal₂Hal₂, HReO₄–Chal₂Hal₂, HReO₄–Chal₂Hal₂, Chal'₂Hal₂; сульфіду ренію(VII) Re₂S₇–Chal₂Hal₂ i Re₂S₇–Hal₂ (де Chal i Chal' – атоми халькогенів S або Se). У результаті отримано 10 халькогенгалогенідних комплексів ренію, з яких 4 – вперше, інші синтезовані методами, розробленими при виконанні даної роботи.

Вивчено проаналізовано вплив концентрації, співвідношеня та компонентів склад і будову середовища, температури отриманих на халькогенгалогенідів ренію. Встановлено, що підвищення температури синтезу від 100°С до 200°С та збільшення концентрації селену у реакційному середовищі від 11 до 22% обумовлює процес відновлення іонів ренію з переходом його електронної конфігурації з $5d^0$ у $5d^3$ стан. Це узгоджується із більш вираженими відновними властивостями селену у порівнянні з сіркою.

Встановлено, що у хлоридних системах утворюються моноядерні координаційні халькогенгалогенідні сполуки ReSCl₃, ReSe₄Cl₆ та триядерні кластери загального складу Re₃Chal₇Cl₇ (де Chal – S, Se). У бромідних системах формуються тільки три- та чотириядерні кластерні структури складу Re₃Chal₇Br₇, Re₃Se₃S₄Br₁₃ та Re₄S₄Se₄Br₁₆.

Встановлено структуру кристалічних одержаних вперше кластерних халькогенгалогенідів ренію: Re₃SeS₆Cl₇, Re₃Se₂S₅Cl₇, Re₃Se₃S₄Br₁₃, Re₄Se₄S₄Br₁₆ та сульфохлориду ReSCl₃. Методом рентгеноструктурного аналізу встановлено, що ReSCl₃ має полімерну лінійну будову [{ReCl₂(μ -Cl)}₂(μ -S)₂]_n, яка представляє новий тип структури (просторова група C2 / m, a = 11.4950 (7), b = 6,5626 (3), c = 5,9938 (4) Å, β = 95,199 (4), Z = 4), яка близька до структури типу NbCl₄. Селенохлорид ренію(IV) ReSe₄Cl₆ має власний структурний тип, є моноядерним комплексом ренію(IV), що включає аніон [ReCl₆]^{2–} октаедричної та катіон Se₄²⁺ квадратної будови.

На відміну від селенорхлориду ренію(IV) шість халькогенгалогенідів ренію загального складу Re₃Chal₇Hal₇ (де Chal – S, Se; Hal – Cl, Br) – триядерні іонні кластерні комплекси наступної будови: [Re₃(μ_3 -Chal)(μ -Chal₂)₃Hal₆]⁺Hal⁻. Атоми ренію електронної конфігурації 5*d*² утворюють одинарні зв'язки Re(V)– Re(V) у трикутному кластерному катіоні. Один атом халькогену утворює тридентатний місток – «шапковий» ліганд μ_3 -Chal^{2–}, що додатково скріпляє трикутний металічний кластер. Три атоми халькогену перхалькогенідних містків μ -Chal₂^{2–} лежать у площині трикутника Re₃, а три інших знаходяться над цією площиною та утворюють своєрідну лунку, в якій розміщується галогенідний аніон. Кожний з атомів халькогенів перхалькогенідних містків, зв'язаний з обома атомами ренію. Шість атомів галогенів, зв'язаних з атомами ренію – кінцеві. Координаційне число у ренію у сполуці рівне 9.

Кристалічна структура вперше отриманого селеносульфідоброміду ренію валового складу $Re_3Se_3S_4Br_{13}$ представляє собою тривимірний пакет ізольованих триядерних кластерних катіон-аніонних комплексів $[Re_3(\mu_3-S)(\mu-S)_3(SeBr_2)_3Br_6]^+Br^-$. Три атоми ренію утворюють майже рівносторонній трикутник Re_3 з «шапковим» атомом-лігандом μ_3-S^{2-} і трьома містковими атомами-лігандами μ - S^{2-} . Таким чином, комплекс $Re_3Se_3S_4Br_{13}$ відрізняється від триядерних кластерних халькогенгалогенідів ренію загального складу $Re_3Chal_7Hal_7$, які містять у своїй структурі кластерний металоостов [Re_3Chal_7], або [Re₃(μ_3 -Chal)(μ -Chal₂)₃], наявністю кластерного металоостову [Re₃Chal₄], або [Re₃(μ_3 -Chal)(μ -Chal)₃]. Отже, структурний фрагмент [Re₃(μ_3 -Chal)], є основою для обох видів триядерних халькогенгалогенідів ренію. Місця у координаційному оточенні кожного із атомів ренію, які звільнилися при перетворенні [Re₃Chal₇] \rightarrow [Re₃Chal₄], займають молекули-ліганди SeBr₂. Координаційне число ренію рівне 9.

Встановлено, що одержаний вперше селеносульфідобромід ренію валового складу Re₄Se₄S₄Br₁₆ є ізольованим молекулярним чотириядерним кластерним халькогенгалогенідом ренію будови Re₄(µ₃-S)₄(SeBr₂)₄Br₈. Кубанове кластерне ядро [Re₄(µ₃-S)₄] утворене правильним тетраедром Re₄ електронної конфігурації 5d³ з одинарними зв'язками Re(IV)-Re(IV) 2.698 та 2.738Å. Довжини цих зв'язків співпадають із одинарними зв'язками Re(V)-Re(V) у наведених вище комплексах Re₃Chal₇Hal₇ (2.692-2.755Å) та Re₃Se₃S₄Br₁₃ (2.637-2.703 Å). Кожна трикутна грань тетраедра Re₄ координована містковим µ₃-Sлігандом при довжині зв'язків (Re-S) 2,240, 2,293 та 2,332 Å і представляє собою триядерний кластерний реній-халькогенідний фрагмент [Re₃(µ₃-S)]. Таким чином, основою і цього комплексу є структурний блок [Re₃(µ₃-Chal)]. Середні довжини зв'язків (Re-µ₃-S) складають 2.288Å у Re₃Se₃S₄Br₁₃ та 2.281Å у Re₄Se₄S₄Br₁₆. Довжина координаційного зв'язку Re→Se у триядерному комплексі складає 2.582-2.619Å, а у чотириядерному – дещо подовжена (2.675 Å). Відстані (Se-Br) у молекулах-лігандах – навпаки: у чотириядерному комплексі коротші (2.324 Å), а у триядерному – довші (2.339-2.394 Å). Координаційне число ренію – 9.

Таким чином вперше показано, що, на відміну від відомих у літературі твердофазних синтезів при 350–550°С, зниження температури синтезу до 200°С у рідкому халькогенгалогенідному середовищі з надлишком халькогену призводить до формування у складі халькогенгалогеніду Re₄Se₄S₄Br₁₆ чотириядерного кластерного кубанового реній-халькогенідного ядра [Re₄(µ₃- Chal)₄]. Ймовірно, це обумовлено утворенням у тих же самих

халькогенгалогенідних середовищах при 100°С структурного попередника – триядерного кластерного селеносульфідоброміду Re₃Se₃S₄Br₁₃, де є блоки для утворення комплексу Re₄Se₄S₄Br₁₆ – триядерний остов [Re₃(μ_3 -S)], кожен з атомів ренію якого координовано двома кінцевими лігандами Br⁻ та нейтральним лігандом SeBr₂, а у цілому це – [Re₃(μ_3 -S)(SeBr₂)₃Br₆]⁷⁺. Отже, структурний фрагмент [Re₃(μ_3 -Chal)] є основою для трьох видів кластерних халькогенгалогенідів ренію – триядерних комплексів загального складу Re₃Chal₇Hal₇ і Re₃Chal₇Hal₁₃, та чотириядерних комплексів – Re₄Chal₈Hal₁₆.

Експериментально доведено, що при температурі синтезу 100 °C в середовищах з надлишковим вмістом халькогену утворюються, в основному, моноядерні халькогенгалогеніди ренію, однак, в деяких випадках можливе формування і триядерних кластерних реній-халькогенідних остовів [Re₃Chal₄] та [Re₃Chal₇]. Підвищення температури у цих середовищах до 200°C приводить до утворення три- та чотириядерних кластерних халькогенгалогенідів ренію з реній-халькогенідними остовами [Re₃Chal₇] та [Re₄Chal₄].

Квантово-хімічні розрахунки електронної структури комплексів ReSCl₃, Re₃Se₃S₄Br₁₃ та Re₄Se₄S₄Br₁₆, підтвердили експериментальні дані щодо кристалічної будови одержаних халькогенгалогенідів ренію. Так для комплексу ReSCl₃ на основі розрахунків ЕГС поблизу рівня Фермі виявлено піки, які відносяться до 5d орбіталей Re, гібридизованих з 3p орбіталями атомів сірки та хлору. Розрахунки свідчать про металічний характер комплексу; охарактеризовано хімічні зв'язки у цьому комплексі та встановлено ефективні заряди на атомах: [Re^{+1,55}][S^{-0,41}][Cl1^{-0,39}]₂[Cl2^{-0,36}]. Близкість зарядів на аксіальних (Cl1) та екваторіальних (Cl2) атомах хлору про їх ідентичність, а отже відсутність місткових зв'язків свідчить (Re-Cl2-Re), що добре узгоджується з близькими довжинами зв'язків (Re-Cl1) (2.289 Å) та (Re-Cl2) (2.274 Å) за даними рентгеноструктурного аналізу. Розподіл ELI-D уздовж ланцюга показує підвищене значення електронної густини між парами ренію з короткою відстанню (Re-Re) і підтверджує

наявність слабкої взаємодії метал-метал, що обумовлює ланцюгову структуру комплексу. Взаємодія між ланцюгами виникає за рахунок дисперсійних сил за участю неподілених пар електронів атомів S і Cl2.

Для сполуки Re₃Se₃S₄Br₁₃ проведено оптимізацію молекули та розраховано ефективні заряди на атомах: [Re^{+1,23}]₃[Se^{+0,47}]₃[S^{-0,33}]₄[Br^{-0,29}]₁₃. «Зв'язок» Br⁻-µ-S повністю іонний, що підтвердило катіон-аніонну будову триядерних халькогенгалогенідних комплексів ренію Re₃Chal₇Hal₁₃.

Розрахунок електронної густини станів комплексу Re₄Se₄S₄Br₁₆ показав, що її розподіл є характерним для напівпровідників, а отже, прогнозує напівпровідникові властивості комплексу з шириною забороненої зони 1.47eB. Квантово-хімічні розрахунки показали полярний ковалентний характер зв'язків (Re–S), (Re–Se), (Re–Cl), (Re–Br) і неполярний Re–Re.

Результати IЧ- та КРС- спектроскопічних дослідженнь одержаних халькогенгалогенідів ренію корелюють із встановленою методом рентгеноструктурного аналізу їх будовою. У спектрах сполук октаедричної будови ReSCl₃ та ReSe₄Cl₆ ідентифікуються лише смуги поглинання частот коливань зв'язків (Re–Cl), а у триядерних кластерних халькогенгалогенідах Re₃Chal₇Hal₇ – всіх структурних фрагментів: зв'язки (Re–Re) у металокластері, (Chal–Chal) у лігандах μ -Chal₂^{2–}, а також (Re– μ_3 -Chal), (Re–Chal) та (Re–Hal). У спектрах триядерного Re₃Se₃S₄Br₁₃ та чотириядерного Re₄Se₄S₄Br₁₆ кластерних селеносульфідобромідів встановлено смуги поглинання коливань зв'язків (Re– Re), (Re– μ_3 -S), (Re–Chal), (Re–Br) і молекули-ліганду SeBr₂.

Показано, що продукти гідролізу синтезованих халькогенгалогенідів ренію можуть бути ефективними каталізаторами процесів рідкофазного гідрування *мета*-нітробензойної кислоти до *мета*-амінобензойної кислоти, *пара*-нітробензойної кислоти до *пара*-амінобензойної кислоти та етилового ефіру *пара*-нітробензойної кислоти до етилового ефіру *пара*-амінобензойної кислоти у воді, водних хлоридно-, броміднокислих та спиртових розчинах, і процесу рідкофазного гідрування хіноліну в розчині метанолу до 1,2,3,4тетрагідрохіноліну та метилтетрагідрохіноліну. Виходи цільових продуктів на каталізаторі, утвореного в процесі гідролізу триядерного селеносульфідоброміду ренію Re₃Se₃S₄Br₁₃ складають від 68% до 100%.

Спосіб одержання нового чотириядерного селеносульфідоброміду ренію Re₄S₄Se₄Br₁₆ захищено патентом.

Ключові слова: реній, сірка, селен, хлор, бром, халькогенгалогеніди, халькоген, галоген, кластер, триядерний, чотириядерний, каталіз, гідрування, нітросполуки, аміносполуки, хінолін.

SUMMARY

Subbotin V.V. Synthesis, structure and properties of coordination rhenium(IV,V) chalcohalides. – Manuscript.

Thesis for a Ph.D. degree in specialty 02.00.01 – inorganic chemistry. – V.I. Vernadskii Institute of General and Inorganic Chemistry, Ukrainian NAS, Kyiv, 2019.

The thesis deals with systematic study of complex formation in system: a rhenium compound – a liquid chalcogen-halides medium with an excess of chalcogen, for obtaining new homo- and heterochalcohalides of Re, determination of their composition, structure, physicochemical and catalytic properties.

A systematic study of complex formation at 100 and 200 °C in 44 systems was carried out. Tpy systems were based on rhenium(VII) oxide Re₂O₇–Chal₂Hal₂, Re₂O₇–Chal–Chal₂Hal₂, Re₂O₇–Chal'–Chal₂Hal₂, Re₂O₇–Chal₂Hal₂–Chal'₂Hal₂; perrhenic acid HReO₄–Chal₂Hal₂, HReO₄–Chal–Chal₂Hal₂, HReO₄–Chal'–Chal₂Hal₂, HReO₄–Chal₂Hal₂–Chal'₂Hal₂ and rhenium(VII) sulfide Re₂S₇–Chal₂Hal₂ i Re₂S₇– Hal₂ (Chal and Chal' are S or Se atoms in the same system). As a result, 10 chalcohalide complexes of rhenium were obtained, 4 of them were obtained first time, and others were synthesized by other methods like was not described.

The influence of the concentration ratios of components and temperature of process on the composition and structure of the obtained chalcohalides of rhenium have been studied and analyzed. It has been found that that the increase temperature from 100 ° C to 200 ° C and the increase in the concentration of selenium from 11 to 22% contributes to a more complete chemical reduction of the rhenium atoms and turning its electronic configuration from 5d⁰ to the 5d³ state. This is consistent with the more pronounced reductive properties of selenium compared to sulfur.

It was shown that mononuclear coordination chalcohalide compounds $ReSCl_3$, $ReSe_4Cl_6$ and trinuclear clusters of the general formula $Re_3Chal_7Cl_7$ (Chal – S, Se) form in chloride systems. At the same time, only cluster thinuclear ($Re_3Chal_7Br_7$ and $Re_3Se_3S_4Br_{13}$) and tetranuclear ($Re_4S_4Se_4Br_{16}$) chalcohalides are formed in bromide systems.

The crystalline structure of the new rhenium chalcohalide clusters: $Re_3SeS_6Cl_7$, $Re_3Se_2S_5Cl_7$, $Re_3Se_3S_4Br_{13}$, $Re_4Se_4S_4Br_{16}$ was established and already known $ReSCl_3$, the structure which has not been investigated by this time.

The compound was found to have a polymeric linear structure [{ReCl₂(μ -Cl)}₂(μ -S)₂]_n, which represents a new structure type (space group C2/m, a = 11.4950(7), b = 6.5626(3), c = 5.9938(4) Å, β = 95.199(4)°, Z = 4). The structure is closely related to the NbCl₄-type and expands the series of similar one-dimensional chain structures.

The rhenium selenochloride, ReSe_4Cl_6 (own structural type), for the given X-ray analysis, is a mononuclear complex of rhenium(IV) with anion $[\text{ReCl}_6]^{2-}$ octahedral structure and a cation Se_4^{2+} of a square structure.

6 rhenium chalcohalides of the general formula $Re_3Chal_7Cl_7$ (Chal – S, Se; Hal – Cl, Br) namely: $Re_3S_7Cl_7$, $Re_3Se_7Cl_7$, $Re_3Se_7Br_7$, $Re_3Se_7Br_7$, $Re_3Se_2S_5Cl_7$ and $Re_3SeS_6Cl_7$ are cluster trinuclear rhenium chalcohalide complexes: $[Re_3(\mu_3-Chal)(\mu-Chal_2)_3Hal_6]^+Hal^-$. Electron configuration of rhenium atoms is $5d^2$ allows to form the single bonds Re(V)–Re(V) in trinuclear cluster cation.

One chalcogen atom of the tridentate settlement is the "cap" ligand μ_3 -Chal^{2–}and additionally strengthens metal cluster. Three chalcogen atoms of perchalkogenic ligands μ -Chal₂^{2–} lie at the square of the triangle Re₃, while the other three are located above this plane and form a peculiar hole in which the halide anion is placed. Each chalcogene atoms of the perhalcogenide bridges, bound to both rhenium atoms. The six halogen atoms bonded to the rhenium atoms are finite. Coordination number in rhenium is 9.

The crystalline structure of selenium rhenium sulfidobromide $Re_3Se_3S_4Br_{13}$ can be described as a three-dimensional package of isolated trinuclear cluster cationanionic complexes $[Re_3(\mu_3-S)(\mu-S)_3(SeBr_2)_3Br_6]^+Br^-$. Three rhenium atoms form an almost equilateral triangle of Re_3 with a "capsule" ligand atom μ_3-S^{2-} and three bridge ligand atoms $\mu-S^{2-}$. Thus, from trivalent cluster chalcohalides of the general composition of the $Re_3Chal_7Hal_7$ rhenium, which are described above and contain, in their structure, the cluster metal-chalcogen core $[\text{Re}_3\text{Chal}_7]$ or $[\text{Re}_3(\mu_3\text{-Chal})(\mu\text{-Chal}_2)_3]$, the complex $\text{Re}_3\text{Se}_3\text{S}_4\text{Br}_{13}$ differs in that it contains a cluster metal chalcogen-core $[\text{Re}_3\text{Chal}_4]$ afo $[\text{Re}_3(\mu_3\text{-Chal})(\mu\text{-Chal})_3]$. Consequently, the structural fragment $[\text{Re}_3(\mu_3\text{-Chal})]$ is the basis for both types of trinuclear chalcohalides of rhenium. Places in the coordinating environment of each of the rhenium atoms, which were released due to the transformation $[\text{Re}_3\text{Chal}_7] \rightarrow [\text{Re}_3\text{Chal}_4]$, occupy the SeBr₂ ligand molecule. Coordination number of rhenium atoms is also equal to 9.

found that obtained for the first time, the rhenium It has been selenosulfidobromide Re₄Se₄S₄Br₁₆ is an isolated molecular tetranuclear cluster chalcohalide of the structure of $Re_4(\mu_3-S)_4(SeBr_2)_4Br_8$ structure. Cubane-like core formed from a nearly regular tetrahedron Re_4 of the electronic configuration of $5d^3$ with single bonds Re(IV)-Re(IV) 2.698 and 2.738Å by the reduction of Re_2O_7 . The lengths of these bonds coincide with the single bonds Re(V)-Re(V) in the abovementioned Re₃Chal₇Hal₇ (2.692-2.755Å) and Re₃Se₃S₄Br₁₃ (2.637-2.703 Å) complexes. Each triangular face capped symmetrically by a bridging μ_3 -S-ligand with a length of the Re-S 2,240, 2,293 and 2,332 Å bonds, is a trinuclear cluster rheniumchalcogenide fragment [Re₃(μ_3 -S)]. Thus, the basis of this complex is the structural unit [Re₃(μ_3 -Chal)] too. The average lengths of the Re- μ 3-S bonds are 2.288Å in Re₃Se₃S₄Br₁₃ and 2.281Å in Re₄Se₄S₄Br₁₆. The coordinating bond length Re \rightarrow Se in the trinuclear complex is 2.582-2.619Å, and in the tetranuclear is a bit longer - 2.675 Å. The distances of Se-Br in the molecules-ligands, on the contrary, in the tetranuclear complex are shorter - 2.324 Å, and in the trinuclear - 2.339-2.394 Å. Coordination number of renium - 9.

Thus, by reducing the synthesis temperature to 200 ° C, unlike solid-phase interactions at 350-550 ° C, known from literary sources, for the first time in a liquid chalcogen-halide medium with an excess of chalcogen we managed to form a tetranucler cluster cuban-like rhenium-chalcogenide core $[Re_4(\mu_3-Chal)_4]$ in chalcohalide rhenium Re₄Se₄S₄Br₁₆. Most likely, it became possible due to the fact that even at 100 ° C in the same liquid chalcogen-halide medium, its structural

precursor, the trinucleus cluster selenosulfidobromide $Re_3Se_3S_4Br_{13}$. Because there are structure blocks for formation of the $Re_4Se_4S_4Br_{16}$ complex, is formed, namely: the trinuclear core $[Re_3(\mu_3-S)]$, each rhenium atoms is coordinated with two terminal Br^- ligands and a neutral SeBr_2 ligand, and in general it is $[Re_3(\mu_3-S)(SeBr_2)_3Br_6]^{7+}$. Consequently, the structural fragment $[Re_3(\mu_3-Chal)]$ is the basis for three types of cluster chalcohalides of rhenium - trinuclear complexes of general formulas $Re_3Chal_7Hal_7$ and $Re_3Chal_7Hal_{13}$ and tetranucler complexes $-Re_4Chal_8Hal_{16}$.

At a synthesis temperature of 100 °C in chalcohalide medium with excess of chalcogen, mainly mononuclear chalcohalides of rhenium are formed, but in some cases, formation of trinuclear cluster rhenium-chalcogenide cores [Re₃Chal₄] and [Re₃Chal₇] is possible. An increasing temperature to 200°C in these chalcohalide medium contributes to the formation of thi- and tetranuclear cluster rhenium chalcohalides with rhenium-chalcogenide cores [Re₃Chal₇] and [Re₄Chal₄].

Quantum chemical studies of the electronic state for complexes $ReSCl_3$, $Re_3Se_3S_4Br_{13}$ and $Re_4Se_4S_4Br_{16}$ were carried out. Based on calculations of electronic density of states (DOS) and electron localizability indicator (ELI-D), additional information on the state of the complexes and their electrical properties was obtained. Quantum chemical calculations of the electronic structure confirmed the experimental data on the crystalline structure of the obtained rhenium chalcohalides.

So for the ReSCl₃ complex, based on the (DOS) calculations, the valence and conduction peaks near the Fermi level (E_F) are dominated by Re 5d orbitals, hybridized with 3p orbitals from chlorine and sulfur atoms. The DOS calculations indicate metallic character of complex. The formation of chemical bonds in this complex was characterized and effective charges on atoms were established: [Re^{+1,55}][S^{-0,41}][Cl1^{-0,39}]₂[Cl2^{-0,36}]. The closeness of charges on the axial (Cl1) and equatorial (Cl2) chlorine atoms indicates their identity, and therefore the lack of bridge-links of Re–Cl2–Re, which is well consistent with the close connections of Re–Cl1 (2.289 Å) and Re–Cl2 (2.274 Å) from the structural analysis data. The distribution of ELI-D along the chain shows an elevated electron density between

rhenium vapor with a short distance Re–Re and confirms the presence of weak metalmetal interaction, which in fact provides the chain structure of the complex. Interaction between the chains arises due to the dispersion forces with the participation of unshaded pairs of electrons of the S and Cl2 atoms.

For the complex $\text{Re}_3\text{Se}_3\text{S}_4\text{Br}_{13}$ by quantum chemical methods, optimization of the molecule was carried out and effective charges on the atoms were calculated: $[\text{Re}^{+1,23}]_3[\text{Se}^{+0,47}]_3[\text{S}^{-0,33}]_4[\text{Br}^{-0,29}]_{13}$. The "bond" is a completely ionic bond, which confirmed the cation-anionic structure of trinuclear rhenium chalcohalide complexes $\text{Re}_3\text{Chal}_7\text{Hal}_{13}$.

The calculation of the electron DOS in Re₄Se₄S₄Br₁₆ showed that the distribution of the density of states is characteristic for semiconductors, and therefore predicts the semiconductor properties of the complex with a band-gap of 1.47eV. Quantum chemical calculations showed the polar covalent bond Re–S, Re–Se, Re–Cl, Re–Br bonds that are polarized to the halogen atom; Re–Re bonds are non-polar covalent bonds.

IR and Raman spectroscopic investigations of the obtained chalcohalides of rhenium have been carried out, which correlate with the established method of X-ray diffraction analysis of the structure of rhenium chalcohalides. In the spectra of the compounds of the octahedral structure ReSCl₃ and ReSe₄Cl₆ only the frequencies of oscillations of the Re-Cl bonds are identified, and in the trinucleant cluster chalcohalides Re₃Chal₇Hal₇ all structural fragments: Re-Re bonds in the metal cluster, Chal–Chal in the μ -Chal₂^{2–}, Re– μ_3 -Chal, Re–Chal and Re–Hal. In the spectra of the trinuclear $Re_3Se_3S_4Br_{13}$ tetranuclear and Re₄Se₄S₄Br₁₆ cluster selenosulfidobromides, the oscillation frequencies of the Re-Re, Re-µ3-S, Re-Chal, Re–Br and ligaments in the SeBr₂ ligand molecule were determined.

It has been shown that products of hydrolysis of synthesized rhenium chalcohalides may be effective catalysts of processes of liquid phase hydration of *meta*-nitrobenzoic acid to *meta*-aminobenzoic acid, *para*-nitrobenzoic acid to *para*-aminobenzoic acid to *ethyl* ester of *para*-nitrobenzoic acid to *ethyl* ester of *para*-

aminobenzoic acid in water , aqueous chloride, bromide and alcohol solutions, as well as the process of liquid phase hydrogenation of quinoline in a solution of methanol to 1,2,3,4-tetrahydroquinoline and methyltetrahydroquinoline The yield of the products on the catalyst formed in the process of hydrolysis of trinuclear rhenium selenosulfidobromide $Re_3Se_3S_4Br_{13}$ were from 68% to 100%.

The method of obtaining a new tetranuclear rhenium selenosulfidobromide $Re_4S_4Se_4Br_{16}$ was patented.

Keywords: rhenium, sulfur, selenium, chlorine, bromine, chalcohalides, cluster, trinuclear, tetranuclear, quaternary, catalysis, hydrogenation, nitro compounds, amino compounds, quinoline.

СПИСОК ПУБЛІКАЦІЙ ЗА ТЕМОЮ ДИСЕРТАЦІЇ

1. **Subbotin V.**, Demchenko P. Y., Yanko O., Kharkova L., Gladyshevskii R. E., Volkov S. Synthesis, Structure and Some Catalytic Properties of the New Trinuclear Rhenium Cluster Compound Re₃Se₃S₄Br₁₃ *Solid State Phenomena*, **2017**, 257, 227-230 (*Особистий внесок здобувача*: синтез сполуки, участь в обговоренні результатів та підготовка рукопису статті).

2. S.V. Volkov, O.G. Yanko, V. Subbotin, P.Yu. Demchenko, R.E. Gladyshevskii, L.B. Kharkova On the preparation, structure and bonding of ReSCl₃ *Chem. Met. Alloys.* 2015. 8, \mathbb{N} 3, 13–24. (*Особистий внесок здобувача*: синтез сполуки, запис спектрів КРС, їх інтерпретація, участь в обговоренні результатів та підготовка рукопису статті)

3. M. A. Shestopalov, Yu. V. Mironov, V. V. Subbotin, and S. V. Volkov The complex [$\{Re_3(\mu_3-S)(\mu-S_2)_3\}Br_6$]Br: a novel method of synthesis and the reaction with KF•HF *Russian Chemical Bulletin*, **2014**. Vol. 63, No. 12, 2625–2629. (*Особистий внесок здобувача*: синтез сполуки, участь в обговоренні результатів та підготовка рукопису статті)

4. О.Г. Янко, Л.Б. Харькова, **В.В. Субботин**, А.С. Николенко, С.В. Волков Семейство трехъядерных кластерных халькогенгалогенидов рения. *Укр. хим. журн.* **2015**. 81, № 3, 3–7. (*Особистий внесок здобувача*: синтез сполук, запис ІЧ-спектрів та спектрів КРС, їх інтерпретація, участь в обговоренні результатів та підготовка рукопису статті)

5. С.В. Волков, О.Г. Янко, П.Ю. **В.В.** Субботин, Демченко, Л.Б. Харькова, Р.Е. Гладышевский Синтез и строение четырехъядерного кластерного селеносульсидобромида рения Re₄Se₄S₄Br₁₆ *Укр. хим. журн.* **2015**. 81, № 9, 7–11. (*Особистий внесок здобувача*: синтез сполуки, запис IЧ-спектрів та спектрів КРС, їх інтерпретація, участь в обговоренні результатів та підготовка рукопису статті)

6. О.Г. Янко, Л.Б. Харькова, С.А. Баранец, З.А. Фокина, Н.Г. Александрова, Э.М. Машкова, **В.В. Субботин** Синтез и строение халькогенгалогенидов платиновых и редких металлов. Укр. хим. журн. 2015. 81, №11. (Особистий внесок здобувача: синтез сполук, участь в обговоренні результатів та підготовка рукопису статті)

7. С.В. Волков, Р.Е. Гладишевский, О.Г. Янко, Л. Б. Харькова, П.Ю. Демченко, **В.В.Суботін**, Е.М. Машкова, А.С. Ніколенко Спосіб одержання чотири ядерного кластерного селеносульфідоброміду ренію Re₄Se₄S₄Br₁₆. Пат. 111360 Україна, МПК C01G 47/00: заявник і патентовласник Інститут загальної та неорганічної хімії ім. В. І. Вернадського, Львівський національний університет ім. І. Франка. – и **2016** 04302; заявл. 19.04.2016; опубл. 10.11.2016, Бюл. № 21.

8. **V. Subbotin**, O. Yanko, P. Demchenko, L. Kharkova, R. Gladyshevskii, S. Volkov Synthesis, structure and some catalytic properties of the new trinuclear rhenium cluster compound Re₃Se₃S₄Br₁₃. The XX-th International Conference on Solid Compounds of Transition Elements, April 11-15 **2016**, Zaragoza (Spain). Book abstracts. 39.

9. S.V. Volkov, **V. Subbotin**, L.B. Kharkova, O.G. Yanko Trinuclear chalcogen-halide clusters of rhenium. 3rd International Conference on Research Frontiers in Chalcogen Cycle Science & Technology (G16), 27-28 of May, 2013 : abstracts. – Delft, the Netherland **2013**. 40.

10. О.Г. Янко, П.Ю. Демченко, Л.Б. Харькова, **В.В. Суботін**, С.В. Волков, Р.Є. Гладишевський Чотириядерний кластерний селеносульфідобромід ренію Re₄Se₄S₄Br₁₆. XV Наукова конференція «Львівські хімічні читання-2015». Львів, **2015**. Збірн. наук. праць. Н49.

11. О.Г. Янко, Л.Б. Харькова, **В.В. Субботин** Семейство халькогенгалогенидных трехъядерных кластеров рения. XIX Українська конференція з неорганічної хімії за участю закордонних учених, 7-11 вересня, 2014 р., м. Одеса. Тези доп. Одеса, **2014**. 36.

12. **В.В. Суботін**, О.Г. Янко, П.Ю. Демченко, Л.Б. Харькова, С.В. Волков, Р.С.Гладишевський Структура та зв'язок у сульфідохлориді ренію

ReSCl₃. XV Наукова конференція «Львівські хімічні читання-2015». – Львів, **2015**. Збірн. наук. праць. H48.

13. **В.В.** Суботін, О.Г. Янко, Л.Б.Харькова, С.О.Баранець Комплексоутворення у системах Re–Chal–Hal. XX Української конференції з неорганічної хімії за участю закордонних учених до 100- річчя заснування НАН України. Тез. доп. (XX UCIC). Дніпро, Україна, 17-20 вересня **2018**. 77.

AHO	ТАЦІЯ	2
ПЕРЕ	ЕЛІК УМОВНИХ ПОЗНАЧЕНЬ ТА СКОРОЧЕНЬ	19
всту	/Π	
РОЗ Д	ЦЛ 1 ОГЛЯД ЛІТЕРАТУРИ	
1.1.	Типи халькогенгалогенідів ренію	
1.1.1.	Халькогенгалогеніди ренію з невизначеною будовою	
1.1.2.	Чотириядерні кластерні халькогенгалогеніди ренію	30
1.1.3.	Шестиядерні кластерні халькогенгалогеніди ренію	
1.2.	Хімічні властивості халькогенгалогенідів ренію	
1.2.1.	Відношення до атмосфери і вологості повітря	
1.2.2.	Розчинність і комплексоутворення	39
1.2.3.	Взаємодія з воднем	39
1.2.4.	Взаємодія з галогенами	40
1.2.5.	Метод хімічного "вирізання" кластерних ядер у х	імії
халько	огенгалогенідів ренію	
1.2.6.	Коливальна спектроскопія халькогенгалогенідів ренію	
1.2.7.	Халькогенідні та халькогенгалогенідні сполуки ренію у каталізі	
1.3. B	исновки до розділу 1	
РОЗ Д	ЦЛ 2 МЕТОДИКИ ЕКСПЕРИМЕНТУ	47
2.1.	Методики синтезу та очистки вихідних реагентів	47
2.1.3.	Хімічні реактиви, що були використані в процесі виконання роботи	49
2.2.	Методика синтезу халькогенгалогенідних сполук ренію	50
2.3.	Методи дослідження отриманих сполук	51
2.3.1.	Рентгенфлуоресцентний аналіз	51
2.3.2.	ІЧ-спектроскопія	52
2.3.3.	Спектроскопія КРС	52
2.3.4.	Рентгенофазовий та рентгеноструктурний аналізи	53
2.3.5.	Електронна будова синтезованих сполук ренію	

4. Дослідження каталітичних властивостей продуктів гідролізу одержаних		
лькогенгалогенідів ренію		
5. Висновки до розділу 2		
ОЗДІЛ З ЕКСПЕРИМЕНТАЛЬНІ ДОСЛІДЖЕННЯ		
1. Синтез халькогенгалогенідних сполук ренію в середовищах із		
адлишком халькогену		
2. Особливості кристалічної будови синтезованих халькогенгалогенідів		
енію за даними рентгенофазового та рентгеноструктурного аналізів		
3. Особливості електронної будови синтезованих сполук ренію		
4. ІЧ-спектроскопія та спектроскопія КРС		
5. Каталітичні властивості продуктів гідролізу халькогенгалогенідів ренію		
процесі гідрування органічних нітросполук104		
6. Каталітичні властивості халькогенгалогенідів ренію у процесі		
дкофазного гідрування хіноліну 108		
7. Висновки до розділу 3 111		
СПИСОК ВИКОРИСТАНИХ ЛІТЕРАТУРНИХ ДЖЕРЕЛ		
ОДАТКИ 126		

ПЕРЕЛІК УМОВНИХ ПОЗНАЧЕНЬ ТА СКОРОЧЕНЬ

	1	•
	пиметипформ	$\lambda \Lambda I \Pi$
μμψη	Димстилформа	лиц
7 1		

- ДМСО диметилсульфоксид
- м-НБК мета-нітробензойна кислота
- м-АБК мета-амінобензойна кислота
- *п*-НБК *пара*-нітробензойна кислота
- *п*-АБК *пара*-амінобензойна кислота
- ЕЕПНБК етиловий ефір *пара*-нітробензойної кислоти
- ЕЕПАБК етиловий ефір пара-амінобензойної кислоти
- М елемент Re
- Hal елемент-галоген (Cl, Br)
- Chal]
- Chal, слемент-халькоген (S, Se, Te)
- КЧ координаційне число
- РСА рентгеноструктурний аналіз
- РФА рентгенофазовий аналіз
- ЯМР ядерний магнітний резонанс
- IЧ інфрачервона область
- КРС комбінаційне розсіювання світла
- Е_{зв.} енергія зв'язку
- ЕГС електронна густина станів
- ELI-D індикатор локалізованості електронів
- QTAIM квантова теорія атомів у молекулах
- DFT теорія функціонала густини
- Т температура
- Z кількість формульних одиниць на комірку
- v валентні коливання зв'язків
- δ деформаційні коливання зв'язків; міжатомні відстані
- ω масова частка елементу у сполуці, (%); валентні кути

ВСТУП

Актуальність теми. Кластерні халькогенгалогенідні сполуки ренію привертають особливу увагу завдяки напівпровідниковим, каталітичним, люмінесцентним властивостям. Широкий спектр таких властивостей та унікальні кристалічні структури координаційних сполук ренію обумовлюють інтерес як до вдосконалення методів їх синтезу, так і до отримання нових структур з встановленням факторів, що впливають на їх будову та властивості.

На даний час результатів детального дослідження сполук ренію у рідких халькогенгалогенідних середовищах у літературі не описано. В основному, координаційні сполуки ренію одержують шляхом твердофазного синтезу за високих температур (450-1000°С). Тому перспективним є метод синтезу сполук ренію з використанням рідких неводних середовищ на основі моногалогенідів халькогенів. Перевагами даного методу є відносно низькі температури синтезу (100-200°С), стадія гомогенності, під час якої вихідна сполука ренію повністю розчиняється у халькогенгалогенідному середовищі.

Халькогенідні і галогенідні сполуки ренію використовують як ефективні каталізатори для підвищення селективності ряду технологічних процесів та збільшення виходів цільових продуктів. Вони не схильні до дії розповсюджених каталітичних сірко- та селенвмісних отрут через наявність халькогенів в їх складі.

Таким чином, розробка нових енергоощадних методів синтезу сполук ренію у рідких халькогенгалогенідних середовищах з вивченням впливу електронної будови та структури координаційних сполук на їх властивості обумовлює наукову актуальність роботи, практичне значення якої базується на можливості одержання матеріалів з каталітичними та напівпровідниковими властивостями.

Зв'язок роботи із науковими програмами, планами, темами. Роботу виконано у відповідності до плану науково-дослідних робіт Інституту загальної та неорганічної хімії ім. В.І. Вернадського НАН України, в рамках держбюджетних тем: «Фізико-неорганічна і координаційна хімія кластерних, макроциклічних, супрамолекулярних та композиційних функціональних сполук і речовин» (державний реєстраційний номер роботи 0113U001114, 2013-2017 pp.), «Розробка нових наноматеріалів (опто-електронних, енергоперетворювальних, каталітичних) з використанням іонних рідин і рідких кристалів» (державний реєстраційний номер 0108U004604, 2013-2016 pp.), договору ДФФД-РФФД «Халькоброміди платинових металів і ренію та комплекси на їх основі» (державний реєстраційний номер 0113U003626, 2013р.).

Мета і задачі дослідження. Мета роботи полягала у розробці методу синтезу нових гомо- та гетерохалькогенгалогенідних сполук ренію у рідких халькогенгалогенідних середовищах (з надлишком халькогену) з встановленням їх складу, будови та каталітичних властивостей.

Для досягнення поставленої мети необхідно було вирішити такі основні задачі:

1. Отримати нові халькогенгалогенідні сполуки ренію з вмістом одного або двох видів атомів халькогенів.

2. Визначити оптимальні умови синтезу (температурний режим, співвідношення реагентів), що впливають на склад та будову отриманих сполук.

3. Встановити хімічний склад, будову одержаних сполук та дослідити їх спектрально-структурні характеристики.

4. Дослідити каталітичні властивості синтезованих сполук.

Об'єкти дослідження: умови утворення, склад, молекулярна будова, кристалічна структура, спектральні характеристики, фізико-хімічні та каталітичні властивості халькогенгалогенідів ренію.

Предмет дослідження: гомо- та гетерохалькогенідні сполуки ренію.

Методи дослідження. Хімічний склад одержаних сполук встановлено методом рентгенфлуоресцентної спектроскопії. Для підтвердження їх однофазності та визначення параметрів кристалічної гратки використано рентгенофазовий аналіз. За даними спектроскопії комбінаційного розсіювання

світла та інфрачервоної спектроскопії доведено наявність хімічних зв'язків (Re-Hal), (Re-Chal), (Chal-Hal), (Chal-Chal) (де Chal – S, Se; Hal – Cl, Br) в сполуках. Кристалічну одержаних структуру сполук встановлено рентгеноструктурним аналізом методом Рітвельда. Продукти каталітичного відновлення воднем *м*-нітробензойної кислоти, її похідних, та хіноліну у гідролізу халькогенгалогенідів присутності продуктів ренію якості В каталізаторів ідентифікували хромато-масспектрометричним методом та методом спектрометрії ЯМР.

Наукова новизна одержаних результатів. Проведено дослідження комплексоутворення при 100 та 200°С у 44 системах: сполука ренію – рідке халькогенгалогенідне середовище з надлишком халькогену, з яких 28 – на основі оксиду ренію(VII): Re_2O_7 —Chal₂Hal₂, Re_2O_7 —Cha

Встановлено вплив концентраційних співвідношень компонентів середовища і температури на склад і будову отриманих халькогенгалогенідів ренію. Виявлено, що підвищення температури проведення реакції від 100 до 200°С та збільшення концентрації селену у реакційному середовищі сприяє більш повному відновленню атомів ренію та переходу його електронної конфігурації з $5d^0$ у $5d^3$ стан. Середовища на основі моногалогенідів сірки виявились більш реакційноздатними порівняно із системами на основі моногалогенідів селену.

Показано, що у хлоридних системах утворюються моноядерні координаційні халькогенгалогенідні сполуки ReSCl₃, ReSe₄Cl₆ та триядерні кластери. У бромідних системах формуються тільки кластерні структури – трита чотириядерні халькогенгалогеніди ренію.

Записані ІЧ- та КРС-спектри халькогенгалогенідів ренію з повним віднесенням смуг поглинання та КР-ліній до відповідних структурних фрагментів сполук.

Вперше синтезовано та встановлено кристалічну структуру ряду кластерних халькогенгалогенідів ренію: $Re_3SeS_6Cl_7$, $Re_3Se_2S_5Cl_7$, $Re_3Se_3S_4Br_{13}$, $Re_4Se_4S_4Br_{16}$, та структуру вже відомого сульфідохлориду металу $ReSCl_3$, будова якого до цього часу була не визначена.

Практичне значення одержаних результатів. Проведено дослідження каталітичних властивостей продуктів гідролізу одержаних халькогенгалогенідних сполук ренію у реакціях рідкофазного гідрування заміщених ароматичних кислот та їх ефірів (м-/п-нітробензойної кислоти (м-/п-НБК) до м-/п-амінобензойної кислоти (м-/п-АБК) та етилового ефіру пнітробензойної кислоти (ЕЕПНБК) до етилового ефіру п-амінобензойної кислоти (ЕЕПАБК)). Показано, що продукти гідролізу халькогенгалогенідів ренію у воді, хлоридних, бромідних і спиртових розчинах можуть використовуватись в якості ефективних каталізаторів. Максимальні виходи цільових продуктів (м-АБК – 93%, ЕЕПАБК – 76%, 1,2,3,4-тетрагідрохіноліну (ТГХ, ~100%) та ТГХ і метилтетрагідрохіноліну) спостерігалися при використанні як каталізатору продукту гідролізу селеносульфідоброміду ренію Re₃Se₃S₄Br₁₃ в процесах рідкофазного каталізу в діапазоні температур 50-150°С та тиску 1-50 атм. протягом 1-24 год.

На спосіб одержання нового чотириядерного селеносульфідоброміду ренію Re₄Se₄S₄Br₁₆ отримано патент України на корисну модель.

Особистий внесок здобувача. Дисертантом виконано експериментальну роботу по синтезу халькогенгалогенідів ренію, встановлено якісний та кількісний склад одержаних сполук, проаналізовано та інтерпретовано дані ІЧ- і КРС спектроскопії, узагальнено та систематизовано дані рентгенофазового і рентгеноструктурного аналізів. Досліджено каталітичну активність продуктів гідролізу халькогенгалогенідів ренію. Сформульовано основні положення та висновки дисертаційної роботи, оформлено наукові публікації.

Дослідження каталітичних властивостей одержаних сполук проводили в Інституті фізичної хімії ім.Л.В.Писаржевського НАН України спільно з д.х.м Колотіловим С.В., спектри КРС зразків записано в Інституті фізики напівпровідників ім. В.Є. Лашкарьова НАН України разом з к.фіз.-мат.н. A.C. Рентгенофазовий Ніколенком та рентгеноструктурний аналізи ренію Львівському синтезованих халькогенгалогенідів виконано y національному університеті імені Івана Франка МОН України з к.х.н., с.н.с. П.Ю. Хроматомасспектри продуктів каталізу досліджено в Демченком Інституті органічної хімії НАН України.

Обговорення та узагальнення одержаних результатів проведено з науковим керівником академіком НАН України, д.х.н., проф. Волковим С.В., та за участю к.х.н. Харькової Л.Б., к.х.н. Янка О.Г..

Апробація результатів дисертації. Основні результати роботи представлено на 3rd International Conference on Research Frontiers in Chalcogen Cycle Science & Technology (G16) (Delft, the Netherlands, 2013), XIX Українській конференції по неорганічній хімії за участю зарубіжних вчених (Одеса, 2014), Науковій конференції молодих дослідників ІЗНХ ім. В.І. Вернадського НАН України (Київ, 2014), XIV Науковій конференції «Львівські хімічні читання -2015» (Львів, 2015), 20th International Conference on Solid Compounds of Transition Elements «SCTE-2016» (Zaragoza, Spain, 2016)

Публікації. По темі дисертаційної роботи опубліковано 6 статей у фахових наукових виданнях, 6 тез доповідей, одержано 1 патент України на корисну модель.

Структура дисертації. Дисертаційна робота включає вступ, три розділи, висновки, список літературних джерел (130 найменувань), 2 додатки, які викладені на 130 сторінках. Робота містить 34 рисунків та 10 таблиць.

РОЗДІЛ 1 ОГЛЯД ЛІТЕРАТУРИ

1.1. Типи халькогенгалогенідів ренію

1.1.1. Халькогенгалогеніди ренію з невизначеною будовою

Халькогенгалогеніди ренію отримують шляхом взаємодії галогенідів металу з халькогенами, халькогенідів ренію з галогенами, галогенідів і халькогенідів металу з моногалогенідами халькогенів, галогенідів ренію з халькогенідами інших металів, халькогенідів ренію з галогенідами інших елементів, а також галогенуванням та шляхом терморозкладу інших халькогенгалогенідів ренію. Температура синтезу може коливатися від 20 до 500° С. Будову цих сполук аторами не визначено. Однак, для деяких з них: ReSCl₃, ReSF₄, ReS₂Cl₃ та Re₂TeCl₃ висловлено припущення про полімерну структуру (табл. 1.1, рис. 1.1).

Таблиця 1.1 – Халькогенгалогеніди ренію з невизначеною будовою та методи їх отримання.

Сполиса	Buying peopenty	Температура	Літ.
Сполука	Вихідні реагенти	синтезу, °С	посилання
1	2	3	4
	ReCl ₅ +S	270	[1]
	ReCl ₃ +S		[2]
ReSCla	$Re_2S_7+Cl_2$	400-450	[3]
	ReS ₂ +Cl ₂	400-450	[3]
	$Re_2S_3Cl_4+Cl_2$	400-450	[3]
	ReSCl ₃ (t-розклад)	300°C	[4]
ReSBr ₂	ReBr ₃ +S		[2]

Продовження таблиці 1.1

1	2	3	4
ReSeCl ₂	ReCl ₃ +Se		[2]
	ReSe ₂ +Cl ₂	480-500	[5]
ReSeBr ₂	ReBr ₃ +Se		[2]
PeSCl	ReCl ₅ +S ₂ Cl ₂	140	[4]
KCSC13	$ReCl_5+Sb_2S_3(CS_2)$	20	[6]
ReSF ₄	ReF ₆ +S	300	[7]
	ReCl ₅ +S	125	[1]
ReSCl ₄	ReCl ₃ +S ₂ Cl ₂		[1]
	ReSCl ₃ (t-розклад)	300	[4]
ReS ₂ Cl ₃	ReCl ₅ +S ₂ Cl ₂	300	[4]
	ReCl ₅ +4S	220	[1]
ReS ₂ Cl.S ₂ Cl ₂	2ReCl ₅ +9S	240	[1]
	ReCl ₅ +7S	200	[1]
	ReS ₂ +S ₂ Cl ₂		[1]
	ReCl ₅ +2S	160	[1]
ResS-CL	2ReCl ₅ +9S	180	[1]
100203014	$Re_2S_7+Cl_2$	120	[3]
	ReS ₂ Cl ₃ (t-розклад)	300	[4]
Re ₂ TeCl ₃	Re ₆ Te ₁₅ +PCl ₅	170	[8]
ReS ₂ Se ₂ Cl ₅	ReCl ₅ +Se+S ₂ Cl ₂	200	[9]

Рисунок 1.1 – Імовірні структури: а) ReSCl₃, б) ReS₂Cl₃.

Координаційні халькогенгалогеніди ренію

Дані таблиці 1.2 показують, що рідкі середовища хлористого тіонілу або самих галогенідів халькогенів сприяють утворенню координаційних халькогенгалогенідів ренію в інтервалі температур 20–100°С.

Твердофазна взаємодія ReCl₄+ChalCl₄+Chal (де Chal – Se, Te) потребує більш високої температури для проведення синтезу – 210-230°C, а участь в якості вихідного реагенту металічного ренію – 400°C.

Сполука ReCl₅(SCl₂)₄, на думку авторів, є адуктом ReCl₅·4SCl₂. Селено-(ReSe₂Cl₁₂, ReSe₄Cl₆) і телурохлориди (ReTe₂Cl₁₂, ReTe₈Cl₆) належать до комплексів іонного типу, які містять октаедричний аніон [ReCl₆]²⁻ і катіони SeCl₃⁺, Se₄²⁺, TeCl₃⁺ та Te₈²⁺ відповідно (рис. 1.2).

Халькогенгалогеніди складу ReChal₂Cl₁₂ є гетероядерними комплексами, в яких не тільки реній, а й атоми халькогенів формують свої координаційні багатогранники. У структурі ReSe₂Cl₁₂ трикутна основа поліедра селену є містковою між двома поліедрами [ReCl₆] (рис. 1.2а), а в структурі ReTe₂Cl₁₂ аналогічна основа поєднує три поліедри ренію (рис. 1.2б). З урахуванням цих взаємодій координаційне число атомів халькогену зростає до 6, а координаційний поліедр має форму деформованого октаедра.

Сполука	Вихілні реагенти	Температура
Chonyku	Bhaidin bear chin	синтезу, °С
ReCl ₅ (SCl ₂) ₄	ReCl ₅ +SCl ₂ [4]	20-100
ReSe ₂ Cl ₁₂	$ReCl_5+SeCl_4$ (SOCl ₂) [10]	20
	ReCl ₄ +SeCl ₄ (SOCl ₂) [10]	75
ReSe ₄ Cl ₆	ReCl ₄ +SeCl ₄ +Se [11]	210
ReTe ₂ Cl ₁₂	ReCl ₅ +TeCl ₄ (SOCl ₂) [10]	75
	ReCl ₄ +TeCl ₄ (SOCl ₂) [10]	75

Таблиця 1.2 – Координаційні халькогенгалогеніди ренію та методи їх одержання.

	ReCl ₅ +TeCl ₄ +Te [12]	150
ReTe ₈ Cl ₆	ReCl ₄ +TeCl ₄ +Te [13]	230
Re ₂ SCl ₁₂	$ReCl_5+S_2Cl_2 [14]$	20
	Re+SCl ₂ [15]	400
Re ₂ SeCl ₁₂	ReCl ₄ +SeCl ₄ (SOCl ₂) [10]	75
Re ₂ TeCl ₁₂	ReCl ₄ +TeCl ₄ (SOCl ₂) [10]	75

Комплекси складу Re₂ChalCl₁₂ (де Chal – S, Se, Te) побудовано із відповідних катіонів ChalCl₃⁺ та біядерного аніону [Re₂Cl₉]⁻, що представляють собою два октаедра [ReCl₆]^{2–}, з'єднані однією гранню та містять зв'язок Re–Re ~ 2.7 Å. В них атоми халькогену також формують деформоване октаедричне оточення за рахунок додаткових зв'язків з атомами хлору біядерних фрагментів [Re₂Cl₉] (рис. 1.3).

Рисунок 1.2 – Будова комплексів: а) $ReSe_2Cl_{12}$, б) $ReTe_2Cl_{12}$, в) $Te_8^{2+}[ReCl_6]^{2-}$.

Рисунок $1.3 - Cтруктура Re_2ChalCl_{12}$.

Триядерні кластерні халькогенгалогеніди ренію

Всі сполуки ренію, наведені у таблиці 1.3, є молекулярними іонними триядерними кластерними халькогенгалогенідними комплексами ренію(V) загального складу Re₃Chal₇Hal₇ (рис. 1.4).

Таблиця 1.3 – Триядерні кластерні халькогенгалогеніди ренію та методи їх отримання.

Сполука	Вихідні реагенти	Температура
		синтезу, °С
Re ₃ S ₇ Cl ₇	$ReOCl_4+S+S_2Cl_2 [16]$	200
	$ReCl_4+S+S_2Cl_2[17]$	130
Re ₃ S ₇ Cl ₆ AlCl ₄	$Re_{2}O_{7}+AlCl_{3}+S_{2}Cl_{2}[18]$	200
Re ₃ S ₇ Br ₇	$Re_2O_7+S_2Br_2$ [18]	200
	$ReBr_4 + S + S_2Br_2[17]$	180
Re ₃ Se ₇ Cl ₇	ReCl ₄ +Se+SeCl ₄ [17]	230-280
	$Re_{3}Se_{7}Br_{7}+Se_{2}Cl_{2}[17]$	
Re ₃ Se ₇ Br ₇	$ReBr_4+Se+Se_2Br_2[17]$	220
	$ReBr_4+Se+SeBr_4 (SiBr_4) [17]$	250

Рисунок 1.4 – Структура а) Re₃Chal₇Hal₇ та б) Re₃S₇Cl₆AlCl₄.

Сполуки такого типу отримано при взаємодії різних реагентів при середній температурі 200°С. Згідно даних РСА, ці комплекси побудовано з іонних пар [Re₃(µ₃-Chal)(µ-Chal₂)₃Hal₆]⁺Hal⁻ (де Chal – S, Se; Hal – Cl, Br, AlCl₄), які знаходяться у власних позиціях на осях симетрії 3-го порядку. Вісь симетрії у кожному з комплексів проходить через Hal-anion, центр трикутного металоостову Re₃ (перпендикулярно його площині) і «шапковий» ліганд µ₃-Chal²⁻, які знаходяться, відповідно, над і під площиною трикутника Re₃. Інші шість атомів халькогенів утворюють три перхалькогенідні містки µ-Chal₂²⁻, які перпендикулярні до зв'язків (Re–Re). Кожен з атомів халькогену, що входить в ці містки, пов'язаний з обома атомами ренію. Три атоми халькогену розташовуються у площині трикутника Re₃, інші три атоми – над цією площиною, утворюючи порожнину для аніонів (Cl⁻, Br⁻, AlCl₄⁻), пов'язаних з ними вторинним зв'язком. Шість атомів галогенів - кінцеві.

1.1.2. Чотириядерні кластерні халькогенгалогеніди ренію

Серед великого різноманіття чотириядерних кластерних сполук ренію, в тому числі і з метал-халькогенідним остовом [Re₄Chal₄] (де Chal – S, Se, Te) [21], на

сьогодні відомі лише чотири халькогенгалогенідні комплекси загального складу Re₄Chal₈Hal₁₆ (де Chal – S, Se, Te; Hal – Cl, Br) (табл. 1.4).

Таблиця 1.4 – Чотириядерні кластерні халькогенгалогеніди ренію та методи їх отримання.

Сполука	Вихідні реагенти	Температура
		синтезу, °С
$Re_4Te_8Cl_{16}$	ReCl ₅ +Te [19]	350
$Re_4Te_8Br_{16}$	Re+Te+Br ₂ [20]	550
$Re_4S_4Te_4Cl_{16}$	ReCl ₅ +S+Te [19]	400
$Re_4Se_4Te_4Cl_{16}$	ReCl ₅ +Se+Te [19]	400

Всі сполуки одержані шляхом твердофазної взаємодії у вакуумованих i 350-550°C ізольованими запаяних ампулах при € молекулярними будови чотириядерними кластерними комплексами $\operatorname{Re}_4(\mu_3 -$ Chal)₄(ChalHal₂)₄Hal₈. Основним їх структурним блоком є кубанове кластерне ядро [Re₄(μ_3 -Chal)₄], яке утворене практично правильним тетраедром Re₄ із одинарними зв'язками Re(IV)-Re(IV) 2.706-2.843 Å, всі трикутні грані якого симетрично координовані містковими µ₃-Chal-лігандами. Кожен атом ренію додатково координовано двома кінцевими лігандами Hal- і нейтральним лігандом ChalHal₂ (рис. 1.5).

Рисунок 1.5 – Структура Re₄Chal₈Hal₁₆.

1.1.3. Шестиядерні кластерні халькогенгалогеніди ренію

Для ренію одержання шестиядерних халькогенгалогенідів використовують, як правило, високотемпературний твердофазний синтез за участю металічного ренію, його галогенідів і/або халькогенідів за температур 450-1100°С (табл. 1.5). Відмінною особливістю цього методу є досить низька швидкість реакції, яка лімітована дифузією у твердому тілі. Синтез проводять шляхом нагрівання ретельно подрібнених і перемішаних реакційних сумішей вихідних речовин у вакуумованих запаяних кварцевих ампулах. З метою підвищення однорідності продукту проводять періодичне струшування ампул. Проте, через поганий контакт між реагуючими речовинами, як правило, продуктом реакції є суміш різних фаз. Підвищення температури і збільшення часу синтезу сприяє підвищенню однорідності продукту. Для виділення основного продукту - халькогенгалогеніду ренію, після завершення основної стадії синтезу, як правило, використовують метод газотранспортної реакції з парів. Таким чином, вдається не тільки відокремити основний продукт від побічних, але і виростити його монокристали для подальшого дослідження методом РСА.

Таблиця 1.5 – Шестиядерні кластерні халькогенгалогеніди ренію і методи їх отримання.

Сполука	Вихідні реагенти	Температура синтезу, °С
1	2	3
$Re_6S_4Cl_{10}$	$\operatorname{ReCl}_{5}+\operatorname{Re+S}[22]^{*}$	850
$Re_6S_5Cl_8$	$\operatorname{ReCl}_{5}+\operatorname{Re+S}[22]^{*}$	850
$Re_6S_6Cl_6$	$\operatorname{ReCl}_{5}+\operatorname{Re+S}[22]^{*}$	850
$Re_6S_7Cl_4$	$\operatorname{ReCl}_{5}+\operatorname{Re+S}[22]^{*}$	850
$Re_6S_8Cl_2$	Re+S+Cl ₂ [23]	1100

1	2	3
$Re_6Se_4Cl_{10}$	ReCl ₃ +ReSe ₂ [5]	700-720
	ReCl ₅ +ReSe ₂ +Re [24]	640-720
	ReCl ₅ +Re+Se [25]	780
$Re_6Se_5Cl_8$	$\operatorname{ReCl}_{5}+\operatorname{Re+Se}[25]^{*}$	800
$Re_6Se_6Cl_6$	$\operatorname{ReCl}_{5}+\operatorname{Re+Se}[25]^{*}$	850
Re ₆ Se ₇ Cl ₄	$\operatorname{ReCl}_{5}+\operatorname{Re+Se}[26]^{*}$	950
$Re_6Se_8Cl_2$	$\operatorname{ReCl}_{5}+\operatorname{Re+Se}[27]^{*}$	1100
$Re_6S_4Br_{10}$	$Re+S+Br_2[28]^*$	780
$Re_6S_7Br_4$	$Re+S+Br_2[25]^*$	950
$Re_6S_8Br_2$	Re+S+Br ₂ [29]*	1100
$Re_6Se_4Br_{10}$	$ReSe_2+Br_2 [30]$	580-650
	$ReBr_3+ReSe_2[5]$	700-720
Re ₆ Se ₇ Br ₄	$\operatorname{Re+Se+Br}_2[25]^*$	950
$Re_6Se_8Br_2$	$\operatorname{Re+Se+Br}_2[31]^*$	1100
$Re_6Te_4Cl_{10}$	ReCl ₅ +Te [32]	500
$Re_6Te_4Br_{10}$	$Re_6Te_{15}+Br_2[5]$	60-70
Re ₆ Te ₈ Cl ₁₀	$\operatorname{ReCl}_{5}+\operatorname{Te}[33]^{*}$	450
Re ₆ Te ₁₆ Cl ₆	$\operatorname{ReCl}_{5}+\operatorname{Te}[34]^{*}$	450
Re ₆ Te ₁₆ Cl ₁₈	$\operatorname{ReCl}_{5}+\operatorname{Te}[34]^{*}$	450
$Re_6Te_{14}Br_{14}$	ReBr ₃ +Te [33]	450
Re ₆ Te ₁₄ I ₁₄	Re ₆ Te ₁₅ +I ₂ [35]	450

*- за різних співвідношень реагентів.

За винятком п'яти останніх сполук, представлених в таблиці 1.5, усі інші сполуки є шестиядерними кластерними халькогенгалогенідами ренію(III) (КЧ 9) і одинарними зв'язками Re–Re, які мають високу термічну і хімічну стійкість і загальний валовий склад Re₆Chal_{4+q}Hal_{10-2q} (де Chal – S, Se, Te; Hal – Cl, Br; q = 0-4). Спільним для них є наявність у структурі октаедричного кластера Re₆, який вбудовано в куб із μ_3 -лігандів. При q=4 куб утворюють лише атоми

халькогену. При q<4 псевдокубан утворюють 4+q атоми халькогену та 4-q атоми галогену. Зв'язуванням кластерних угрупувань один з одним, можуть реалізовуватися структури різної розмірності (рис. 1.6).

Рисунок 1.6 – Кристалічні структури шестиядерних халькогенгалогенідів ренію: a) Re₆Chal₄Hal₁₀, б) Re₆Chal₅Hal₈, в) Re₆Chal₆Hal₆, г) Re₆Chal₇Hal₄, д) Re₆Chal₈Hal₂).

Комплекс $\text{Re}_6\text{Te}_8\text{Cl}_{10}$ також містить октаедричний кластерний металоостов Re_6 , який вписаний в псевдокуб Te_6Cl_2 . Особливістю даної сполуки є те, що, якщо в октаедричних комплексах ренію, які містять кластерні ядра зі змішаними лігандами типу [$\text{Re}_6\text{Chal}_{4+q}\text{Hal}_{4-q}$] (q = 1-4), вершини куба статистично зайняті атомами Chal i Hal, то в структурі $\text{Re}_6\text{Te}_8\text{Cl}_{10}$ або [$\text{Re}_6\text{Te}_6\text{Cl}_2$](TeCl_2)₂Cl₄ такої розрізненості не спостерігається. Шість вершин куба Te_6Cl_2 зайняті тільки атомами телуру, дві інші – тільки атомами хлору (рис. 1.7).

Рисунок $1.7 - Cтруктура [Re_6Te_6Cl_2](TeCl_2)_2Cl_4$

Чотири атоми ренію октаедра Re₆, пов'язані хоча б із одним із µ₃-Cl, додатково координовано термінальними атомами хлору; два інших атоми ренію, координовано виключно µ₃-Te, та апікальними нейтральними лігандами TeCl₂ [36].

Ще два телурохлориди $\operatorname{Re}_6\operatorname{Te}_{16}\operatorname{Cl}_6$ та $\operatorname{Re}_6\operatorname{Te}_{16}\operatorname{Cl}_{18}$ також октаедричні кластерні комплекси ренію. Перший з них може бути подано як $[\operatorname{Re}_6\operatorname{Te}_8](\operatorname{Te}_6)(\operatorname{Te}\operatorname{Cl}_3)_2$, оскільки складається з кластерних ядер $[\operatorname{Re}_6\operatorname{Te}_8]^{2+}$, об'єднаних лігандами Te_6 і $\operatorname{Te}\operatorname{Cl}_3^-$. Два атоми ренію у *транс*-положенні координовано лігандами $\operatorname{Te}\operatorname{Cl}_3^-$ (рис. 1.8).

Рисунок 1.8 - Cтруктура [Re₆Te₈](Te₆)(TeCl₃)₂

Чотири інших атоми ренію координовано нейтральними циклічними лігандами Те₆, які мають конформацію крісла. Кожен ліганд Те₆ координує чотири кластерних фрагменти [Re₆Te₈](TeCl₃)₂, утворюючи двовимірну

полімерну сітку. Комплекс $Re_6Te_{16}Cl_{18}$ можна вигляді описати y [Re₆Te₈][Te₈Cl₁₈]. Як і попередній телурохлорид, ця сполука також містить кластерне ядро $[Re_6Te_8]^{2+}$, характерне для октаедричних комплексів ренію, і незвичайний складний ліганд [Te₈Cl₁₈]²⁻. Додатково до чотирьох µ₃-Te-лігандів, кожен атом ренію координовано лігандом [Te₈Cl₁₈]²⁻. У свою чергу, кожен ліганд [Te₈Cl₁₈]²⁻ зв'язаний з шістьма кластерними ядрами [Re₆Te₈] (рис. 1.9). Така координація призводить до співвідношення [Re₆Te₈]²⁺:[Te₈Cl₁₈]²⁻=1:1. У результаті утворюється тривимірна структура. Ліганд [Te₈Cl₁₈]²⁻ має складну будову і може бути поділений на дві складові: центральний фрагмент Te₂Cl₉, який складається з пари октаедрів $TeCl_6$, з'єднаних гранню, і фрагментів Te_2Cl_3 , які є містковими між центральним фрагментом Te₂Cl₉ та двома кластерами Re₆Te₈ [36].

Рисунок 1.9 – Структура [Re₆Te₈][Te₈Cl₁₈].

Телуробромід $Re_6Te_{14}Br_{14}$ і телуройодид $Re_6Te_{14}I_{14}$ можуть бути представлені як [Re_6Te_8](TeHal₂)₆Hal₂ (де Hal – Br, I). Сполуки містять октаедричний кластер Re_6 , який вписаний у куб, що складається з μ_3 -Те. Кожен атом ренію координовано нейтральним лігандом TeHal₂ (рис. 1.10).

Рисунок 1.10 – Структура [Re₆Te₈](TeHal₂)₆Hal₂

Дані комплекси подібні до представленого вище телурохлориду ренію $[Re_6Te_6Cl_2](TeCl_2)_2Cl_4$. Однак, куб складається тільки з атомів телуру і всі атоми ренію мають ліганд TeHal₂, утворюючи катіонний кластер { $[Re_6Te_8](TeHal_2)_6$ }²⁺.

Абсолютна більшість вище згаданих халькогенгалогенідних сполук ренію одержано шляхом гетерогенного синтезу. Слід зазначити, що головним недоліком даного методу є дифузійні ускладнення, які обмежують швидкість процесів і, найчастіше, унеможливлюють отримання високочистих однорідних продуктів. Однак, перевага цих методів полягає у тому, що можливість проведення синтезу при температурах ~1000°C дозволяє реалізовувати такі кластерні структури, які в умовах низьких температур не здатні формуватися.

Відмінною рисою і головною перевагою синтезу у рідких середовищах є стадія гомогенності. На цій стадії, нехай іноді дуже короткій за часом, вихідні компоненти повністю розчиняються у розчиннику, який є середовищем синтезу, а часто одночасно і вихідним реагентом. Крім того, рідкофазний метод синтезу забезпечує:

- відносно високу швидкість реакцій, обумовлену гарним контактом між реагуючими компонентами і високою швидкістю дифузії в рідинах;

- високий ступінь чистоти і однорідності продуктів реакцій завдяки кристалізації з рідкої фази;

- можливість вирощування з розчинів більш-менш великих кристалів сполук, що зручно для їх дослідження;

- відносну простоту і безпеку препаративних робіт.

Єдиний недолік рідкофазних реакцій – обмеженість температурних умов їх проведення.

1.2. Хімічні властивості халькогенгалогенідів ренію

Відомі халькогенгалогеніди ренію тверді речовини, більшість з яких забарвлена у темні кольори від червоного, коричневого до чорного.

1.2.1. Відношення до атмосфери і вологості повітря

Гідролітична активність халькогенгалогенідів металів залежить від співвідношення вмісту в них халькогену і галогену. Халькогенгалогеніди ренію, що містять високий відсоток галогену, зазвичай чутливі до вологи повітря і гідролізують достатньо активно. Під час гідролізу, зазвичай, утворюється відповідний галогеноводень і сполуки металу, склад яких залежить від умов гідролізу. Так, в роботах [14, 37] вивчено поведінку сполук типу ReChal₂Cl₁₂ (де Chal – Se, Te) на повітрі за кімнатної температури і встановлено утворення Re₂OChal₄Cl₂₂ за реакцією:

 $2ReChal_2Cl_{12} + H_2O \rightarrow Re_2OChal_4Cl_{22} + 2HCl\uparrow.$

Для отриманого в такий спосіб оксителурохлориду виконаний РСА [37].

У роботі [38] досліджено гідроліз парами води за 350-500°С двох сульфідохлоридів ренію. У результаті взаємодії при зазначених умовах утворюються сульфооксиди ренію:

 $ReSCl_2 + H_2O \rightarrow ReSO + 2HCl\uparrow$.

 $Re_2S_3Cl_4 + 2H_2O \rightarrow Re_2S_3O_2 + 4HCl\uparrow$.

Таким чином, за низьких температур гідроліз проходить лише з частковим відщепленням галогену у вигляді його гідриду і заміною його на кисень з утворенням оксихалькогенгалогенідів, а за високих температур проходить повне заміщення галогену (що входить до складу халькогенгалогеніду) на кисень з утворенням оксихалькогенідів металу. Халькогенгалогеніди ренію, що містять високий відсоток халькогену, як правило, стійкі на повітрі. Це стосується, перш за все, кластерів ренію(III). Крім цього, хімічна активність сполуки сильно залежить від їх дисперсності. Як правило, дрібнодисперсні порошки хімічно набагато активніші за сполуки, отримані у вигляді кристалів.

1.2.2. Розчинність і комплексоутворення

Більшість відомих халькогенгалогенідів ренію нерозчинні у малополярних (CCl₄, бензол), некомплексоутворюючих розчинниках (сірковуглець, монохлориста сірка). Це обумовлено будовою цих сполук, а вони часто полімери, які містять галогенідні і халькогенідні містки, або кластерами.

Багато з халькогенгалогенідів, у залежності від міцності полімерних ланцюгів або кластерів, розчиняються у донорних розчинниках, таких як ацетонітрил, піридин, ДМФА, ДМСО [4, 39]. У багатьох випадках має місце сольватоліз, що призводить до часткового, або повного руйнування початкової структури сполуки. Те ж саме відбувається у водних розчинах кислот і лугів [40].

1.2.3. Взаємодія з воднем

Водень ефективно відновлює халькогенгалогенідні сполуки ренію до відповідних халькогенідів ренію та галогеноводнів. (табл. 1.6).

Реакція взаємодії	Температура, °С
$ReSCl_2 + H_2 = ReS + 2HCl$	350-500
$ReSeCl_2 + H_2 = ReSe + 2HCl [41]$	490-500
$Re_2S_3Cl_4 + 2H_2 = Re_2S_3 + 4HCl$ [38]	350-500
$Re_6Se_4Cl_{10} + 5H_2 = 2Re_3Se_2 + 10HCl$ [41]	400-410
$Re_6Se_4Br_{10} + 5H_2 = 2Re_3Se_2 + 10HBr$ [41]	460-470
$Re_{6}Te_{4}Br_{10} + 5H_{2} = 2Re_{3}Te_{2} + 10HBr [41]$	350-360

Таблиця 1.6 – Взаємодія халькогенгалогенідів ренію з воднем.

Поступове нагрівання халькогенгалогенідів ренію в струмені водню до 1000°С призводить до повного відновлення ренію до металу та відповідних халькогеноводні і галогеноводнів, що використовується для визначення хімічного складу халькогенгалогенідів ренію будь-якого типу.

$$2Re_{3}S_{7}Cl_{7} + 21H_{2} = 6Re + 14H_{2}S + 14HCl [16].$$

Вміст металу при цьому визначають гравіметричним методом, халькогеноводень і галогеноводень поглинають лужним розчином, а потім визначають кількісно.

1.2.4. Взаємодія з галогенами

При підвищених температурах халькогенгалогеніди ренію вступають в реакцію з галогеном. При цьому продуктами вичерпного галогенування є відповідні галогеніди:

$$2\text{ReSCl}_2 + 4\text{Cl}_2 \rightarrow 2\text{ReCl}_5 + \text{S}_2\text{Cl}_2 (450-500^{\circ}\text{C}) [3].$$

Ряд сполук відносно стійкі до дії галогенів і в одну стадію не галогенуються повністю. Так, $Re_2S_3Cl_4$ отримують хлоруванням Re_2S_7 при 120°C, а при подальшому підвищенні температури він стійкий в струмені хлору

і, тільки при 400°С зафіксовано утворення сульфідохлориду з меншим вмістом сірки, ніж у Re₂S₃Cl₄:

$$2\text{Re}_2\text{S}_3\text{Cl}_4 + \text{Cl}_2 \rightarrow 4\text{Re}\text{S}\text{Cl}_2 + \text{S}_2\text{Cl}_2[3].$$

Деякі сполуки відрізняються високою стійкістю по відношенню до галогенів. Так, селенобромід Re₆Se₄Br₁₀ не вступає в реакцію з бромом навіть при температурі 780°C [30].

1.2.5. Метод хімічного "вирізання" кластерних ядер у хімії халькогенгалогенідів ренію

Відомо, що кластерні халькогенгалогеніди ренію взаємодіють з ціанідом калію [43]. Так, триядерний сульфідобромід ренію Re₃S₇Br₇ реагує з водним розчином КСN при кімнатній температурі за схемою:

 $4\text{Re}_{3}\text{S}_{7}\text{Br}_{7} + 52\text{KCN} \rightarrow 3\text{K}_{4}[\text{Re}_{4}\text{S4}(\text{CN})_{12}] \downarrow + 24\text{KBr} + 16\text{KSCN} + 2\text{Br}_{2}.$

Таким чином, ціанід-іони як сильні нуклеофіли заміщають ліганди μ -S₂²⁻ та Br⁻ і сприяють перебудові кластерного металлоостову [Re₃S₇] в [Re₄S₄].

Відомі чотириядерні халькогенгалогеніди ренію, які також взаємодіють з водним розчином КСN [43] за схемою:

$$\operatorname{Re_4Chal_4(TeCl_2)_4Cl_8} + 12KCN \rightarrow K_4[\operatorname{Re_4Chal_4(CN)_{12}}] \downarrow + 8KCl + 2Te \downarrow + 2TeCl_4$$

(де Chal-S, Se, Te).

Взаємодія цих халькогенгалогенідів ренію с розплавом роданіду калію [21] відбувається за схемою:

Re₄Chal₄(TeCl₂)₄Cl₈+ 12KSCN
$$\rightarrow$$
 K₄[Re₄Chal₄(SCN)₁₂] \downarrow + 8KCl + 2Te \downarrow + 2TeCl₄ (де Chal – S, Se, Te).

У кластерних аніонах $[\text{Re}_4\text{Chal}_4(\text{CN})_{12}]^{4-}$ та $[\text{Re}_4\text{Chal}_4(\text{SCN})_{12}]^{4-}$ атоми ренію(IV), як і у вихідних комплексах, утворюють тетраедр, атоми халькогенів Chal координовані до його граней по μ_3 -типу; кожен атом металу додатково має

по три термінальних ліганди CN⁻ або SCN⁻, які координовані до атому ренію атомом вуглецю, або азоту відповідно [21].

Шестиядерні халькогенгалогеніди ренію типу Re₆Chal₈Hal₂ (де Chal – S, Se; Hal – Cl, Br) взаємодіють з розплавом КСN за 600-650°С за схемою[45]:

 $Re_6Chal_8Hal_2 + 6KCN \rightarrow K_4[Re_6Chal_8(CN)_6] + 2KHal.$

У кластерних аніонах $[\text{Re}_6\text{Chal}_8(\text{CN})_6]^{4-}$ атоми ренію(III), як і у вихідних комплексах, утворюють октаедр, вписаний у куб з атомів халькогенів Chal, які координовані до граней октаедра за μ_3 -типом; до кожного атому металу атомом вуглецю координований термінальний ліганд CN.

Таким чином, у ході цих реакцій кластерні ядра [Re₄Chal₄] і [Re₆Chal₈] «вирізаються» з вихідних халькогенгалогенідних прекурсорів і переходять у відповідні халькогенціанідні форми без зміни складу і архітектури кластерного металхалькогенідного ядра. Реакції «вирізання» кластерних ядер відбуваються з достатньо високими виходами (60-85%). Утворені калієві або натрієві солі з халькоціанідними кластерними аніонами добре розчинні у воді, стійкі на повітрі, у розведених розчинах кислот та лугів, а також в розплавах ціанідів та галогенідів лужних металів до 400-450°С і представляють собою зручні стартові сполуки для синтезу нових структур різного типу [45].

Таким чином, можна відзначити, що найбільш реакційноздатними зі згаданих халькогенгалогенідів є моноядерні комплекси ренію(IV,V). Найактивнішою із сполук є ReCl₅·4SCl₂ [4], що кородує компактний нікель та швидко розкладається при кімнатній температурі на світлі навіть в атмосфері аргону. Ймовірно, це пов'язано зі слабкістю зв'язків Re-SCl₂, завдяки чому сполука може бути ефективним твердим хлоруючим реагентом.

1.2.6. Коливальна спектроскопія халькогенгалогенідів ренію

Хоча коливальні спектри є вельми інформативними для встановлення будови хімічних сполук, у літературі зовсім небагато відомостей про характер ІЧ- та КР- спектри халькогенгалогенідів ренію. Часто, через складність спектрів

сполук, автори обмежуються рішенням лише якісного завдання - віднесенням смуг поглинання частот групових коливань, або простою публікацією значень частот. Віднесення групових частот найчастіше проводиться на підставі порівняння спектрів досліджуваних сполук зі спектрами простих неорганічних молекул, та спектрами аналогічних сполук інших металів або ж сполук, які містять схожі фрагменти структури: Re–Re, Re–Hal, Re–Chal, Chal–Chal, Chal–Hal.

В ІЧ спектрі ReSCl₃ [4] в області 200-4000 см⁻¹ є смуги поглинання (Re-Cl) 325 см⁻¹ та (Re-S) 370 см⁻¹. Відсутність смуг вище 400 см⁻¹, свідчить про відсутність у структурі сполуки зв'язків (Re=S) та (-S-S-), які зазвичай проявляються смугами поглинання в області 500-600 см⁻¹. Це дозволило припустити полімерну структуру сполуки, з сульфідними ланцюгами. При розчиненні ReSCl₃ у донорних розчинниках повинні проходити процеси сольватації, можливий розрив полімерних ланцюгів (-Re-S-Re-)_n і утворення зв'язків (Re=S). В ІЧ-спектрі піридинового сольвату ReSCl₃·2Py зафіксовано смугу при 565 см⁻¹, яку віднесено до v(Re=S), а також смуги координованого піридину.

В IЧ спектрі ReS₂Cl₃ [4], окрім частот коливань зв'язків (Re-Cl) 320, 345 см⁻¹ та (Re-S) 360 см⁻¹, виявлено смугу поглинання при 475 см⁻¹, яку було віднесено до валентного коливання зв'язку (-S-S-) групи [Re(μ-S₂)]. В IЧ-спектрі піридинового сольвату знайдено ту ж смугу поглинання.

В ІЧ-спектрі ReCl₅·4SCl₂[4] знайдено смуги поглинання (Re-Cl) 300 см⁻¹, (Re-S) 350, 380 см⁻¹ та (S-Cl) 460, 520 см⁻¹. Зсув смуг коливань зв'язку (S-Cl) у порівнянні з такими ж для вільного SCl₂ (v_s (S-Cl) = 514 см⁻¹, v_{as} (S-Cl) = 535 см⁻¹) [46] вказує на координацію дихлориду сірки.

1.2.7. Халькогенідні та халькогенгалогенідні сполуки ренію у каталізі

Дослідженням каталітичних властивостей ренію та його сполук займаються вчені багатьох країн з моменту появи кілька десятиліть тому в нафтопереробній промисловості процесу риформінгу та реакції диспропорціювання олефінів на ренієвих каталізаторах. Реній та його сполуки використовуються в якості каталізаторів у багатьох хімічних реакціях: рідкофазного гідрування вуглеводнів, синтезу 3 високим виходом різноманітних органічних сполук, у реакціях полімеризації, олігомеризації, ізомеризації, дегідрогалогенування та ін. [47-51].

Каталітичні властивості халькогенгалогенідів ренію та продуктів їх гідролізу вперше вивчено [52] у процесі рідкофазного гідрування *м*-НБК у *м*-АБК на прикладі сульфідохлориду ренію Re₃S₇Cl₇, його диметилформамідного комплексу Re₃S₄Cl₆·4ДМФА·3H₂O та продуктів його перетворення у воді і диметилформаміді: (Re₃S₄(OH)_n(ДМФА)_y), (Re₃S₇(OH)_m(ДМФА)_x.

Автори [52] припускають, що процесу гідрування *м*-НБК передує стадія формування активних частинок, відповідальних за каталіз. Сульфідохлорид ренію Re₃S₇Cl₇ більш ефективний як каталізатор у воді, ніж у ДМФА (вихід *м*-АБК 96 та 46% мол. відповідно). Водна суспензія сульфідохлориду ренію має кислу реакцію, що свідчить про його гідроліз. При використанні продукту гідролізу Re₃S₄(OH)_n(ДМФА)_у в якості каталізатора гідрування *м*-НБК у диметилформаміді та воді вихід *м*-АБК – 45 та 91% мол. відповідно; у разі застосування (Re₃S₇(OH)_m(ДМФА)_х вихід *м*-АБК у ДМФА – 26, а у воді – 52% мол.

Таким чином, у роботі [52] показано, що сульфідохлоридні комплекси ренію та продукти їх гідролізу, як каталізатори гідрування *м*-НБК, ефективніше працюють у водному середовищі. Максимальна каталітична активність властива комплексам металу з кластерним угрупуванням Re₃S₇. Автори вважають, що сполуки Re₃S₇Cl₇ і (Re₃S₇(OH)_m(ДМФА)_х мають єдиний каталітичний триядерний кластерний центр, який містить Re₃S₇ в оточені гідроксильних груп.

1.3. Висновки до розділу 1

1. Переважно, халькогенгалогенідні сполуки ренію одержують шляхом гетерофазної взаємодії, пов'язаних з роботою без доступу повітря, високим тиском і високими температурами.

2. Різноманіття структурних типів відомих халькогенгалогенідів ренію можна умовно розділити на дві групи: полімери та сполуки молекулярної будови. Більшість з них складають халькогенгалогеніди полімерної природи такі як: ReS₂Cl₃, ReSF₄, Re₂TeCl₃, комплекси ReE₂Cl₁₂, Re₂ECl₁₂ (E – Se, Te), а також шестиядерні кластерні комплекси типу $\text{Re}_6\text{Chal}_{4+q}\text{Hal}_{10-2q}$ (де q = 1-4). До халькогенгалогенідів молекулярної будови можна віднести іонні комплекси: моноядерні – [SeCl₃]₂+[ReCl₆]²⁻, [TeCl₃]₂+[ReCl₆]²⁻, Se₄²⁺[ReCl₆]²⁻, Te₈²⁺[ReCl₆]²⁻, $[\text{Re}_2\text{Cl}_9]^-(\text{SCl}_3)^+$, триядерні біядерні _ кластери — $[\text{Re}_3(\mu_3-\text{Chal})(\mu-$ Chal₂)₃Hal₆]⁺Hal⁻, шестиядерні кластери – [Re₆Chal₄Hal₄]⁶⁺Hal₆⁻, а також неіонні чотириядерні кластери – $\text{Re}_4(\mu_3\text{-}\text{Chal})_4(\text{Chal}\text{Hal}_2)_4\text{Hal}_8$.

3. Склад та будова одержаних халькогенгалогенідів ренію залежить від складу реакційного середовища і температури синтезу. У реакційних середовищах з надлишком галогену утворюються халькогенгалогеніди, в яких атоми галогену займають всі вільні координаційні місця в оточенні металу і співвідношення М: Наl коливається від 1: 6 до 1:12, тоді як співвідношення М: Chal - максимум 1: 2. У середовищах з надлишком халькогену відповідні співвідношення складають від 1: 0.33 до 1: 4 і максимум 1: 8. При температурах до 200°С утворюються моноядерні сполуки, які можуть бути як полімерами, так і біядерними комплексами. Температура 200°С сприяє утворенню триядерних кластерних халькогенгалогенідів ренію. При температурі ~ 400°С формуються чотириядерні тетраедричні кластерні структури, а при 600°С – шестиядерні октаедричні кластери.

4. На даний час дуже мало досліджено процеси комплексоутворення халькогенгалогенідів ренію у рідких неводних середовищах галогенідів халькогенів, особливо, з надлишком халькогену, і в бромідних середовищах: Chal₂Hal₂, розчини Chal' в Chal₂Hal₂, суміші Chal'₂Hal₂ + Chal₂Hal₂. Ці середовища можуть виступати одночасно в якості розчинників і реагентів і дають змогу значно знизити температуру синтезу. Крім того, вони є досить ефективними розчинниками багатьох простих ковалентних сполук ренію: оксидів, оксигалогенідів, галогенідів та елементарних халькогенів і галогенів, що дає змогу варіювати у широких межах концентраціями халькогену і галогену у системі і, таким чином, впливати на склад продуктів реакції та їх будову.

5. Каталітичні властивості халькогенгалогенідів ренію та продуктів їх гідролізу досліджено тільки на прикладі сульфідохлориду ренію Re₃S₇Cl₇ у процесі гідрування *м*-НБК у *м*-АБК.

РОЗДІЛ 2 МЕТОДИКИ ЕКСПЕРИМЕНТУ

2.1. Методики синтезу та очистки вихідних реагентів

Для синтезу нових халькогенгалогенідів ренію необхідно було синтезувати та очистити вихідні сполуки. Більшість з них гігроскопічні, або малостійкі на повітрі, тому зберігаються в запаяних скляних ампулах.

2.1.1. Вихідні сполуки ренію

В якості вихідних реагентів для синтезу халькогенгалогенідів ренію використано оксид ренію(VII), ренієву кислоту, та сульфід ренію(VII).

Ренію(VII) оксид отримували шляхом спалювання металевого ренію в струмені кисню при температурі 300°С за реакцією:

$$4 \text{ Re} + 7\text{O}_2 = 2\text{Re}_2\text{O}_7.$$

Відповідно до [53] порцеляновий човник з порошком металевого ренію поміщали в кварцову трубку і нагрівали в струмені кисню, висушеного за допомогою P₂O₅. Для захисту від атмосферної вологи на виході з трубки ставили порожню промивну склянку і промивну склянку з концентрованою сірчаною кислотою. Потік кисню і температуру регулювали таким чином, щоб синтезований оксид ренію осідав поблизу човника у вигляді кристалів. Вилучали препарат із трубки у боксі з інертною атмосферою.

Ренієва кислота. Синтез HReO₄ проводили із KReO₄ за допомогою катіонообмінної смоли, згідно [54].

Хроматографічну колонку заповнювали катіонообмінною смолою Дауекс 50W-X2. Вміст колонки промивали спочатку 6М хлоридною кислотою, а потім нагрітою до 100°С водою, до відсутності реакції на іони Cl⁻ при додаванні розчину AgNO₃. Гарячий розчин KReO₄ пропускали через колонку, потім пропускали воду і збирали розчин HReO₄. Результати аналізу показали, що в даному розчині іони К⁺ відсутні. Розчин HReO₄ упарювали і висушували в ексикаторі над P₂O₅.

Ренію(VII) сульфід. Для синтезу халькогенгалогенідів ренію використовували Re₂S₇, отриманий з KReO₄ відповідно до [55] за реакцією:

$$2KReO_4 + 8H_2S = Re_2S_7 + K_2S + 8H_2O.$$

Отримання сульфіду ренію проводили в атмосфері азоту. Розчин КReO₄ в 4М хлоридній кислоті кип'ятили для видалення розчиненого кисню. Далі в охолоджений розчин протягом 3 годин пропускали сірководень. Чорний осад сульфіду ренію спочатку промивали насиченим сірководнем 5%-ним розчином хлоридної кислоти, потім спиртом. Після цього препарат сушили в струмені азоту, а потім - у вакуумі.

2.1.2. Моногалогеніди халькогенів і розчини халькогенів у моногалогенідах халькогенів

Для синтезу халькогенгалогенідів ренію в якості вихідних реагентів використовували монохлориди та моноброміди сірки і селену.

Дисульфур дихлорид (монохлорид сірки) S₂Cl₂ – комерційний реактив, який очищали перегонкою у вакуумі у присутності елементарної сірки. Відбирали фракцію з T_{кип.} = 137°C [56].

Диселен дихлорид (монохлорид селену) Se₂Cl₂ синтезували шляхом взаємодії стехіометричних кількостей елементарного селену марки «осч», селену(IV) оксиду і хлоридної кислоти при поступовому додаванні концентрованої сульфатної кислоти за реакцією:

 $3 \text{ Se} + \text{SeO}_2 + 4 \text{ HCl} = 2 \text{ Se}_2 \text{Cl}_2 + 2 \text{ H}_2 \text{O}.$

Отриманий продукт відокремлювали на ділильній воронці і промивали сульфатною кислотою. Залишки сульфатної кислоти видаляли обробкою безводним хлоридом барію з наступним фільтруванням через скляний фільтр [56].

Дисульфур дибромід (монобромід сірки) S₂Br₂. Одержували взаємодією елементарної сірки з бромом марки «ч». Кількість реагентів

брали у стехіометричному співвідношенні у відповідності до рівняння реакції:

$$2 S + Br_2 = S_2 Br_2$$
.

Одержаний продукт переганяли у вакуумі та запаювали в ампули [56].

Диселен дибромід (монобромід селену) Se₂Br₂. Отримували взаємодією стехіометричних кількостей елементарного селену марки «осч» і брому марки «ч» відповідно до реакції:

$$2 \operatorname{Se} + \operatorname{Br}_2 = \operatorname{Se}_2 \operatorname{Br}_2.$$

Оскільки реакція екзотермічна, реакційну суміш охолоджували для більш спокійного проходження процесу [57].

Комбінацією вищенаведених моногалогенідів халькогенів з елементарними сіркою та селеном, з метою одержання насичених розчинів, було приготовано ще 10 реакційних середовищ:

• 20 %-ний розчин S в S₂Cl₂ (система S + S₂Cl₂);

- 22 %-ний розчин Se в S₂Cl₂ (система Se + S₂Cl₂);
- 11 %-ний розчин Se в Se₂Cl₂ (система Se + Se₂Cl₂);
- 18 %-ний розчин S в Se₂Cl₂ (система S + Se₂Cl₂);
- 10 %-ний розчин S в S₂Br₂ (система S + S₂Br₂);
- 7 %-ний розчин Se в S₂Br₂ (система Se + S₂Br₂);
- 15%-ний розчин S в Se₂Br₂ (система S + Se₂Br₂);
- 12 %-ний розчин Se в Se₂Br₂ (система Se + Se₂Br₂);
- S₂Cl₂+Se₂Cl₂ в молярному співвідношенні 1: 1;
- S₂Br₂+Se₂Br₂ в молярному співвідношенні 1: 1.

2.1.3. Хімічні реактиви, що були використані в процесі виконання роботи

Азот (N₂) – ГОСТ 9293-74.

Аргон (Ar) – ГОСТ 10157-79. Сушили, пропускаючи крізь концентровану H₂SO₄.

Бром «ч» (Br₂) – ГОСТ 454-76. Додатково висушували над P₂O₅ і очищали перегонкою.

Бромідна кислота (HBr) «осч» – ГОСТ 2062-77.

Вазелінове масло.

Водень (H₂) – отримували шляхом електролізу дистильованої води за допомогою генератора чистого водню ГВЧ-6. Газ додатково осушували, пропускаючи через H₂SO_{4(конц.)}.

Реній металевий порошкоподібний (Re)-ГОСТ 12339-79.

Селен елементарний (Se) «осч» – ТУ 6-09-2521-77.

Сірка елементарна (S₈) «осч» – ТУ 6-09-2546-77.

Сульфатна кислота (H_2SO_4) «осч» – ГОСТ 14262-78.

Тетрахлорметан (CCl₄) – очищали перегонкою над P₂O₅.

Барію хлорид (BaCl₂) – ГОСТ 4108-72.

Хлоридна кислота (HCl) «осч» – ГОСТ 14261-77.

м-НБК – м-нітробензойна кислота.

n-НБК – *n*-нітробензойна кислота.

ЕЕНБК – етиловий ефір *n*-нітробензойної кислоти.

Хінолін «осч».

Органічні розчинники (етиловий спирт, ацетон) додатково очищали перегонкою, при цьому відбирали фракцію при температурі кипіння речовини [58, 59].

2.2. Методика синтезу халькогенгалогенідних сполук ренію

Як вже було зазначено, переважна більшість вихідних реагентів, а також деякі з отриманих сполук – речовини гігроскопічні. Це зумовило необхідність використання спеціальних методик, прийомів роботи, що дозволило синтезувати сполуки і досліджувати їх властивості без негативного впливу атмосферної вологи, повітря і інших чинників.

Синтез халькогенгалогенідних сполук ренію проводили в спеціальних Г-подібних трубчастих реакторах з термостійкого скла марки «пірекс» [60]. Перетяжки на реакторі полегшували проведення декантації маточного розчину з отриманих твердих продуктів. У нижню частину реактора поміщали вихідні реагенти, до верхньої частини приєднували скляну трубку з оксидом фосфору(V) для попередження потрапляння вологи з повітря. Реакційну суміш нагрівали в дві стадії: на водяній бані при 80-100°С протягом 80 годин з наступним запаюванням реактора і в сушильній шафі при 100 і 200° С (робочі температури синтезів) протягом 140 годин [61]. Під час нагрівання реакційні суміші в реакторах періодично струшували. Після закінчення синтезів, отримані тверді продукти відокремили від рідкої фази декантацією, зливаючи рідкий маточник у верхню частину реактора. Потім цю частину реактора заморожували в рідкому азоті, що дозволяло знизити надмірний тиск газоподібних речовин над реакційною сумішшю, щоб уникнути вибуху реактора під час його відкривання. Після цього реактор відкривали. Отримані тверді продукти синтезів багаторазово промивали чотирихлористим вуглецем і сушили у вакуумі при кімнатній температурі. У разі отримання високодисперсних продуктів, густина яких була близька до густини маточного розчину, виділення їх проводили на фільтрах Шленка, які дозволяють проводити роботу в атмосфері інертного газу без доступу повітря [62]. Висушені тверді халькогенгалогеніди ренію герметично закривали в скляних ампулах і поміщали в ексикатор.

2.3. Методи дослідження отриманих сполук

2.3.1. Встановлення складу одержаних сполук методом рентгенфлуоресцентного аналізу

Якісний та кількісний склад отриманих халькогенгалогенідів ренію визначали за допомогою рентгенфлуоресцентного спектрометра ElvaX Light, обладнаного родієвим анодом та SDD детектором рентгенівського випромінювання з термоелектричним охолодженням. Функціонально даний прилад дозволяє вимірювати вміст хімічних елементів в сполуках починаючи з Na. Це дозволило повноцінно аналізувати всі досліджувані об'єкти.

Зразки поміщали в циліндричну пластикову кювету. Її дном слугувала плівка, індиферентна до проходження рентгенівських променів. Кювету зі зразком переносили в камеру, яку під час аналізу заповнювали газоподібним гелієм.

2.3.2. Встановлення фрагментів структури сполук методом ІЧ-спектроскопії

Для запису інфрачервоних спектрів поглинання одержаних сполук використовували відомі методики з деякими змінами для можливості запису спектрів агресивних і гігроскопічних речовин. Сполуки розтирали в агатовій ступці, з попередньо очищеним та висушеним вазеліновим маслом, до утворення однорідної суспензії, яку переносили на спеціальну поліетиленову плівку, прозору в області запису спектрів. ІЧ-спектри записували на приладі «Hitachi-Fis» в області 30-400 см⁻¹. Для запису спектрів в області 200-700 см⁻¹ використовували спектрометр Specord M-80.

2.3.3. Встановлення фрагментів структури сполук методом спектроскопії КРС

Запис спектрів комбінаційного розсіювання світла проводили при кімнатній температурі за допомогою Raman-спектрометра T-64000 Horiba Jobin-Yvon, обладнаного охолоджуваним ССD детектором. Для збудження використовувалася лінія Ar-Kr іонного лазера з довжиною хвилі 514.5 нм, сфокусованої на зразок у точку діаметром ≈ 1 мкм за потужності випромінювання приблизно 0,1 мВт. Інтерпретація записаних IЧ та КРС спектрів і віднесення смуг поглинання КР-ліній проводили із використанням фрагментарного підходу на підставі відомих літературних даних.

2.3.4. Встановлення будови одержаних халькогенгалогенідів ренію методом рентгенофазового та рентгеноструктурного аналізу

Для рентгенодифрактометричних досліджень отриманих халькогенгалогенідів ренію їх зразки готували шляхом розтирання в агатовій ступці. Порошок зразка рівномірним тонким шаром наносили на спеціальну плівку за допомогою інертного лаку і фіксували зразок такою ж плівкою в кюветі.

Масиви експериментальних інтенсивностей та кутів відображень від досліджуваних зразків отримані на автоматичному дифрактометрі STOE STADI Р з лінійним позиційно-прецизійним детектором PSD за схемою модифікованої геометрії Гінье, метод на проходження $(CuK\alpha_1$ випромінювання; увігнутий Ge-монохроматор [63] типу Йогансона; 2 θ/ω сканування, інтервал кутів $2\theta 2.000 \le 2\theta \le 90.305$ °2 θ із кроком 0.015 °2 θ ; крок детектора 0.480 °20, час сканування у кроці 100-300 с, температура під час зйомки $T = 24.0\pm0.3$ °C, U = 40 кВ, J = 37 мА). Експериментальні лінійні коефіцієнти логарифмічним поглинання визначали відношенням інтенсивності первинного променя до інтенсивності первинного променя після проходження крізь фоновий та робочий зразки. Атестацію апаратури проведено за допомогою стандартів NIST SRM 640b (Si) [64] та NIST SRM 676 (Al₂O₃) [65].

Розрахунок теоретичних дифрактограм, рентгенівський профільний та фазовий аналіз проведено за допомогою пакету програм STOE WinXPOW [66] та PowderCell (версія 2.4) [63]. Індексування дифрактограм, визначення сингонії, параметрів елементарних комірок, імовірних просторових груп проводили аналітичним методом за модифікованим алгоритмом Вернера, використовуючи програму N-TREOR09 [67]. Рентгеноструктурний аналіз проводили методом Рітвельда [68] з використанням функції профілю pseudoVoigt з допомогою програми FullProf.2k [69] із пакету програм WinPLOTR [70]. Стандартизація структурних даних проводили за допомогою програми STRUCTURETIDY [71], для візуалізації структури використана програма DIAMOND [72].

2.3.5. Електронна будова синтезованих сполук ренію

Квантово-хімічні електронної розрахунки структури одержаних халькогенгалогеніді ренію на основі структурних експериментальних даних проводили в рамках теорії функціоналу щільності (DFT) у наближенні повнопотенційного методу лінеаризованих приєднаних плоских хвиль (FP-LAPW) з узагальненою градієнтною апроксимацією (GGA) електронної щільності функціоналу PBEsol обмінно-кореляційного [73], 3 використанням програмного коду Elk [74].

Інтегрування зони Бріллюена в частині, яка не приводиться, виконували сітками 7×7×7 (88 *k*-точок) - 10×10×10 (504 *k*-точок), обмеження енергій для плоских хвиль становило 213-238 eB, критерії збіжності для загальної енергії – 0,003-0,027eB.

2.4. Дослідження каталітичних властивостей продуктів гідролізу одержаних халькогенгалогенідів ренію.

Каталітичну активність продуктів гідролізу отриманих халькогенгалогенідів ренію вивчали у процесі рідкофазного гідрування м-НБК, *п*-НБК та її похідного ЕЕПНБК. Вдосконалена нами методика каталітичних досліджень полягала в наступному. *м*-НБК кислоту (0,100±0,01 г) розчиняли у 100 мл дистильованої води або в 1М, 3М, 6М розчинах HCl, 1М розчині HBr. У випадку *n*-НБК та її похідного ЕЕПНБК в якості середовища використовували 20 та 40%-ні розчини етилового спирту. Для проведення каталітичного процесу використовували наважки халькогенгалогенідів ренію, в яких вміст металу становив 0,01 г. Після цього проводили гідроліз халькогенгалогенідів ренію за температури 80°С в воді, або кислому середовищі.

Отриманий продукт гідролізу відділяли декантацією, промивали дистильованою водою та переносили в колбу з розчином органічної речовини, що підлягала гідруванню. Процес гідрування проводили при температурі 80°C протягом 4 годин з безперервною подачею водню і перемішуванні розчину.

Після завершення процесу гідрування розчин над каталізатором відокремлювали декантацією, випарювали його на водяній бані до сухого стану. У разі використання в якості середовища води в розчин додавали 1 мл відповідної кислоти. Далі отриманий продукт аналізували методом хроматомасспектрометрії.

У випадку гідрування хіноліну в реакційний стакан, об'ємом 70 мл, додавали наважку каталізатору (5-20 мг), 1 ммоль хіноліну та 10 мл метанолу. Стакан поміщався в металічний стакан автоклаву, який продували аргоном і заповнювали воднем, необхідного тиску. Після того автоклав поміщали в нагрівний термостатований блок, де проводилась реакція у необхідному температурному режимі протягом визначеного часу.

Після завершення реакції, автоклав охолоджували до кімнатної температури. Реакційну суміш переносили в центрифужний стакан, центрифугат переносили в круглодонну колбу. Частина прореагованої суміші відбирали на відгонку розчинника, залишок із продуктом реакції (1,2,3,4 - тетрагідрохінолін) віддавали на дослідження методами спектроскопії ЯМР (¹H) та газової, або рідинної хроматографії.

Метод хроматомасспектрометрії.

Спектри продуктів каталізу реєстрували за допомогою хроматографічномасспектрометричної системи, яка складалася з рідинного високоефективного хроматографа (Agilent cepiï 1 100), обладнаного діодною матрицею і масселективним детектором (AgilentLC = MSDSL).

2.5. Висновки до розділу 2

В розділі наведено методики синтезу координаційних моно- та гетерохалькогенідних сполук ренію(IV,V). Охарактеризовано особливості дослідження: рентгенфлуоресцентний методів ïΧ основних та аналіз, КРС, спектроскопія IЧ, кванотово-хімічні рентгенофазовий рентгеноструктурний аналіз. розрахунки, Вдосконалено методику проведення рідкофазного гідрування м- НБК, п-НБК, ЕЕПНБК та хіноліну, а також аналізу одержаних продуктів.

РОЗДІЛ З ЕКСПЕРИМЕНТАЛЬНІ ДОСЛІДЖЕННЯ

3.1. Синтез халькогенгалогенідних сполук ренію в середовищах із надлишком халькогену

Одним із головних завдань даної роботи є дослідження утворення халькогенгалогенідів ренію у наведених середовищах галогенідів халькогенів з надлишковим вмістом халькогену в залежності від складу середовища та температурного режиму. В якості вихідних реагентів використовували оксид та сульфід ренію(VII), а також ренієву кислоту. Моногалогеніди халькогенів, їх суміші та розчини одного халькогену в моногалогеніді іншого використовували і в якості реагентів, і в якості реакційних середовищ синтезу, а саме: S_2Cl_2 , $S+S_2Cl_2$, $Se+S_2Cl_2$, Se_2Cl_2 , $Se+Se_2Cl_2$, $S+Se_2Cl_2$, $S_2Cl_2+Se_2Cl_2$, S_2Br_2 , $S+S_2Br_2$, $Se+S_2Br_2$, $Se+Se_2Br_2$, $S+Se_2Br_2$, $S_2Br_2+Se_2Br_2$. Виходячи з оксиду ренію(VII), у вказаних середовищах за температур 100 і 200°С отримано сполуки, наведені у таблиці 3.1.

Синтези халькогенгалогенідів ренію проводили відповідно до методик, описаних в розділі 2. Вихідну сполуку металу, масою 1 г, поміщали в Гподібний скляний реактор і додавали реагент-середовище у кількості 3 мл. Додавання надлишкової кількості другого реагенту пов'язано з тим, що він виступає також як середовище проходження реакції. За кімнатної температури реакції проходили, як правило, з незначною швидкістю. Однак, при нагріванні реакційної суміші на водяній бані до 70-80°С спостерігалося інтенсивне виділення газоподібних речовин.

Синтез у халькогенгалогенідних середовищах будь-якого складу відбувається за методом «виникаючих» реагентів. У присутності надлишку галогенів – сильних окисників, утворюються продукти галогенування ChalHal₂, ChalHal₄ – відомі ліганди у різних комплексних сполуках р- та dметалів [74].

Таблиця 3.1 – Продукти взаємодії оксиду ренію(VII) з неводними середовищами галогенідів халькогенів з надлишком халькогену

№п/п	Середовище	Продукт синтезу			
		100°C	200°C		
1	S ₂ Cl ₂	ReSCl ₃	Re ₃ S ₇ Cl ₇		
2	$S+S_2Cl_2$	ReSCl ₃	Re ₃ S ₇ Cl ₇		
3	Se+S ₂ Cl ₂	Re ₃ S ₇ Cl ₇	Re ₃ S ₆ SeCl ₇		
4	Se ₂ Cl ₂	*	ReSe ₄ Cl ₆		
5	Se+Se ₂ Cl ₂	*	*		
6	S+Se ₂ Cl ₂	*	Re ₃ S ₅ Se ₂ Cl ₇		
7	$S_2Cl_2 + Se_2Cl_2$	ReSe ₄ Cl ₆	Re ₃ Se ₇ Cl ₇		
8	S ₂ Br ₂	Re ₃ S ₇ Br ₇	Re ₃ S ₇ Br ₇		
9	S+S ₂ Br ₂	Re ₃ S ₇ Br ₇	Re ₃ S ₇ Br ₇		
10	Se+S ₂ Br ₂	$Re_3Se_3S_4Br_{13}$	$Re_4Se_4S_4Br_{16}$		
11	Se ₂ Br ₂	ReSe ₂	Re ₃ Se ₇ Br ₇		
12	Se+Se ₂ Br ₂	*	Re ₃ Se ₇ Br ₇		
13	S+Se ₂ Br ₂	*	Re ₃ Se ₇ Br ₇		
14	$S_2Br_2+Se_2Br_2$	$Re_3Se_3S_4Br_{13}$	Re ₄ Se ₄ S ₄ Br ₁₆		

* – тверда фаза не утворюється.

Формування лігандів у середовищах з надлишком халькогену відбувається більш складним шляхом. Оксид ренію(VII) Re_2O_7 або ренієва кислота HReO_4 ([O₃Re-O-ReO₃(H₂O)₂]), потрапляючи у халькогенгалогенідні середовища, ініціює ряд хімічних процесів, у результаті яких кисень і вода повністю видаляються з координаційного оточення атома ренію за рахунок реакцій:

$$\begin{split} S_2 Hal_2 + 4O^{2-} &\rightarrow 2SO_2 \uparrow + 2Hal^-; \\ Se_2 Hal_2 + O^{2-} &\rightarrow SeOHal_2 + Se \downarrow; \\ 2S_2 Hal_2 + 2H_2O &\rightarrow SO_2 \uparrow + 4HHal + 3S \downarrow; \\ Se_2 Hal_2 + 3H_2O &\rightarrow H_2SeO_3 + 2HHal + H_2Se. \end{split}$$

Видалення частини галогену з реакційного середовища у вигляді газоподібних ННаl призводить, таким чином, до ще більшого насичення системи халькогенами.

Таблиця 3.2 – Продукти взаємодії ренієвої кислоти з неводними середовищами галогенідів халькогенів з надлишком халькогену

№п/п	Середовище	100°C	200°C
1	S ₂ Cl ₂	Re ₃ S ₇ Cl ₇	Re ₃ S ₇ Cl ₇
2	S+S ₂ Cl ₂	Re ₃ S ₇ Cl ₇	Re ₃ S ₇ Cl ₇
3	Se+S ₂ Cl ₂	Re ₃ S ₇ Cl ₇	Re ₃ S ₆ SeCl ₇
4	Se ₂ Cl ₂	*	ReSe ₄ Cl ₆
5	$S_2Cl_2 + Se_2Cl_2$	*	Re ₃ Se ₇ Cl ₇
6	S+S ₂ Br ₂	Re ₃ S ₇ Br ₇	*
7	S+Se ₂ Br ₂	*	Re ₃ S ₇ Br ₇

* – тверда фаза не утворюється.

Самі ж моногалогеніди халькогенів можуть зазнавати перетворень:

 $\begin{aligned} \text{Chal}_{2}\text{Hal}_{2} &\rightarrow \text{Chal}\text{Hal}_{2} + \text{Chal}^{2-};\\ \text{Chal}_{2}\text{Hal}_{2} + n\text{Chal} &\rightarrow \text{Chal}_{2+n}\text{Hal}_{2};\\ \text{Chal}\text{Hal}_{2} &\rightarrow \text{Chal} + \text{Hal}_{2}\uparrow;\\ \text{Chal}_{n} + \text{H}_{2}\text{Chal} &\rightarrow \text{H}_{2}\text{Chal}_{n+1};\\ \text{S} + \text{Se}_{2}\text{Hal}_{2} &\rightarrow \text{SSeHal}_{2} + \text{Se}\downarrow; \end{aligned}$

$$S + Se_2Hal_2 \rightarrow S_2Hal_2 + Se\downarrow;$$

 $S_2Hal_2 + Se_2Hal_2 \rightarrow 2SSeHal_2;$

Можна припустити, що у середовищах моногалогенідів халькогенів 200°C проходять при температурі ло процеси відновлення: окиснення: Chal¹⁺ \rightarrow Chal²⁺ \rightarrow Chal⁴⁺, $Chal^{1+} \rightarrow Chal^{0} \rightarrow Chal^{2-}$. a також терморозкладу: Chal₂Hal₂ \rightarrow Chal_k+Chal_mHal_n. Виникаючі атоми і угрупування атомів стають потенційними лігандами, які беруть участь У комплексоутворенні: монодентатними – Cl⁻, Br⁻, SeCl₂, SeBr₂; бідентатними – μ -S²⁻, μ-Se²⁻, μ-S $-\mu_3$ -S²⁻, μ_3 -Se²⁻, формуючи халькогенгалогенідні сполуки ренію.

ReSCl₃. Сульфідохлорид ренію складу $ReSCl_3$ утворюється при 100°С у двох системах: Re_2O_7 – S_2Cl_2 та Re_2O_7 – $S_-S_2Cl_2$ відповідно до таких схем реакцій (вихід 93 і 96%):

 $2\text{Re}_2\text{O}_7 + 6\text{S}_2\text{Cl}_2 \rightarrow 4\text{Re}\text{SCl}_3 + 7\text{SO}_2 \uparrow + \text{S};$ $2\text{Re}_2\text{O}_7 + 7\text{S} + 6\text{S}_2\text{Cl}_2 \rightarrow 4\text{Re}\text{SCl}_3 + 7\text{SO}_2 \uparrow + \text{S}_8,$

у вигляді кристалічного порошку коричнево-чорного кольору, який швидко гідролізує на вологому повітрі [75]. Сульфідохлорид такого ж складу отримано автором у системі $\text{ReCl}_5-\text{S}_2\text{Cl}_2$ за більш високої температури синтезу - 140°C [4] і автором роботи [6] під час взаємодії ReCl_5 із Sb_2S_3 в середовищі CS_2 за кімнатної температури. В обох випадках структура сполуки не була визначеною.

ReSe₄Cl₆. Селенохлорид ренію складу ReSe₄Cl₆ – дрібнокристалічний порошок чорно-червоного кольору, малостійкий до атмосферної вологи - утворюється у двох системах Re₂O₇–Se₂Cl₂ та HReO₄–Se₂Cl₂ при 200°C, а також у системі Re₂O₇–S₂Cl₂–Se₂Cl₂ (еквімолярна суміш) при 100°C [73-74]. Вихід селенохлориду ReSe₄Cl₆ відповідно до наведених нижче схем реакцій склав 94, 96 і 91%:

 $2\text{Re}_{2}\text{O}_{7} + 12\text{Se}_{2}\text{Cl}_{2} \rightarrow 4\text{Re}\text{Se}_{4}\text{Cl}_{6} + 7\text{SeO}_{2} + \text{Se};$ $4\text{HReO}_{4} + 12\text{Se}_{2}\text{Cl}_{2} \rightarrow 4\text{Re}\text{Se}_{4}\text{Cl}_{6} + 2\text{H}_{2}\text{SeO}_{3} + 5\text{SeO}_{2} + \text{Se};$ $2\text{Re}_{2}\text{O}_{7} + 4\text{S}_{2}\text{Cl}_{2} + 8\text{Se}_{2}\text{Cl}_{2} \rightarrow 4\text{Re}\text{Se}_{4}\text{Cl}_{6} + 7\text{SO}_{2} \uparrow + \text{S}.$

У порівнянні з роботою [11], у середовищі $S_2Cl_2 + Se_2Cl_2$ ми провели синтез не при 210, а 100°С і отримали даний комплекс в рідкому середовищі з оксиду ренію(VII) замість твердофазної взаємодії ReCl₄–SeCl₄–Se.

Re₃S₇Cl₇. Сульфідохлорид ренію $Re_3S_7Cl_7$ отриманий при 100°C у чотирьох системах: Re_2O_7 —Se—S₂Cl₂, $HReO_4$ —S₂Cl₂, $HReO_4$ —S=S₂Cl₂ та $HReO_4$ —Se=S₂Cl₂ з виходами 97, 98, 96, 97% відповідно до схем реакцій:

$$6\operatorname{Re}_{2}\operatorname{O}_{7}+21\operatorname{Se}+14\operatorname{S}_{2}\operatorname{Cl}_{2} \rightarrow 4\operatorname{Re}_{3}\operatorname{S}_{7}\operatorname{Cl}_{7}+21\operatorname{SeO}_{2};$$

 $12\text{HReO}_4 + 25\text{S}_2\text{Cl}_2 \rightarrow 4\text{Re}_3\text{S}_7\text{Cl}_7 + 15\text{SO}_2 + 6\text{H}_2\text{SO}_3 + \text{SCl}_2 + 10\text{Cl}_2\uparrow;$

$$12\text{HReO}_4 + 21\text{S} + 14\text{S}_2\text{Cl}_2 \rightarrow 4\text{Re}_3\text{S}_7\text{Cl}_7 + 15\text{SO}_2 \uparrow + 6\text{H}_2\text{SO}_3;$$

 $12HReO_4 + 21Se + 14S_2Cl_2 \rightarrow 4Re_3S_7Cl_7 + 15SeO_2 + 6H_2SeO_3.$

Ця ж сполука утворюється і при температурі 200°С в системах Re₂O₇– S₂Cl₂ та Re₂O₇–S–S₂Cl₂ з виходами 98 та 99% відповідно за схемами рівнянь:

$$6\text{Re}_2\text{O}_7 + 25\text{S}_2\text{Cl}_2 \rightarrow 4\text{Re}_3\text{S}_7\text{Cl}_7 + 21\text{SO}_2 \uparrow + \text{SCl}_2 + 10\text{Cl}_2 \uparrow;$$

 $6\operatorname{Re}_{2}\operatorname{O}_{7}+21\mathrm{S}+14\mathrm{S}_{2}\mathrm{Cl}_{2}\rightarrow4\operatorname{Re}_{3}\mathrm{S}_{7}\mathrm{Cl}_{7}+21\mathrm{SO}_{2}\uparrow,$

а також у системах HReO₄–S₂Cl₂ та HReO₄–S–S₂Cl₂ за схемами рівняннь, наведеними вище для синтезів при температурі 100°С [74].

У роботах [16] і [17] сульфідохлорид складу $\text{Re}_3\text{S}_7\text{Cl}_7$ був отриманий також в рідкому халькогенгалогенідному середовищі – у розчині сірки у монохлориді сірки у системах $\text{ReOCl}_4\text{--}\text{S}\text{--}\text{S}_2\text{Cl}_2$ (за 200°С) і $\text{ReCl}_4\text{--}\text{S}\text{--}\text{S}_2\text{Cl}_2$ (за 130°С) відповідно. Таким чином, при виконанні роботи понижена температура синтезу цієї кластерної сполуки до 100°С і її отримано з більш доступних вихідних сполук ренію.

Re₃Se₇Cl₇. Селенохлорид ренію складу Re₃Se₇Cl₇ синтезовано авторами роботи [17] шляхом твердофазної реакції у системі ReCl₄–Se–SeCl₄ при температурі 230-280°C. Нами цю ж сполуку отримано при більш низької температурі – 200°C і в рідкому середовищі у двох системах: Re₂O₇–S₂Cl₂–Se₂Cl₂ та HReO₄–S₂Cl₂–Se₂Cl₂. Сполука представляє собою чорний крупнокристалічний порошок у формі блискучих пластинок. Вихід реакцій склав 93% і 91% відповідно [73-75].

Взаємодія у системах відбувається відповідно до схем реакцій:

$$\begin{aligned} 6\text{Re}_2\text{O}_7 + 11\text{S}_2\text{Cl}_2 + 14\text{Se}_2\text{Cl}_2 &\rightarrow 4\text{Re}_3\text{Se}_7\text{Cl}_7 + 21\text{SO}_2 \uparrow + \text{SCl}_2 + 10\text{Cl}_2 \uparrow; \\ 6\text{HReO}_4 + 6\text{S}_2\text{Cl}_2 + 7\text{Se}_2\text{Cl}_2 \rightarrow \\ 2\text{Re}_3\text{Se}_7\text{Cl}_7 + 7\text{SO}_2 \uparrow + 3\text{H}_2\text{SO}_3 + \text{SOCl}_2 + \text{SCl}_2 + 4\text{Cl}_2 \uparrow. \end{aligned}$$

Re₃S₇Br₇. Процес комплексоутворення у системах $Re_2O_7-S_2Br_2$, $Re_2O_7-S_2Br_2$ і $HReO_4-S-S_2Br_2$ при 100°С, та у системах $Re_2O_7-S_2Br_2$, $Re_2O_7-S-S_2Br_2$, $HReO_4-S-Se_2Br_2$ і $Re_2S_7-Br_2$ при 200°С приводить до отримання чорного кристалічного порошку складу $Re_3S_7Br_7$ [76, 77]. Виходи продукту відповідно – 99, 98, 98, 97, 99, 95 і 98%. Процеси проходять згідно з схемами взаємодії:

 $\begin{aligned} 6\text{Re}_2\text{O}_7 + 25\text{S}_2\text{Br}_2 &\rightarrow 4\text{Re}_3\text{S}_7\text{Br}_7 + 21\text{SO}_2 \uparrow + \text{SBr}_2 + 10\text{Br}_2 \uparrow; \\ 6\text{Re}_2\text{O}_7 + 21\text{S} + 14\text{S}_2\text{Br}_2 &\rightarrow 4\text{Re}_3\text{S}_7\text{Br}_7 + 21\text{SO}_2 \uparrow; \\ 12\text{HReO}_4 + 21\text{S} + 14\text{S}_2\text{Br}_2 &\rightarrow 4\text{Re}_3\text{S}_7\text{Br}_7 + 15\text{SO}_2 \uparrow + 6\text{H}_2\text{SO}_3; \\ 12\text{HReO}_4 + 28\text{S} + 14\text{Se}_2\text{Br}_2 &\rightarrow 4\text{Re}_3\text{S}_7\text{Br}_7 + 15\text{SeO}_2 + 6\text{H}_2\text{SeO}_3 + 7\text{Se}. \end{aligned}$

В роботах [17-18] для синтезу Re₃S₇Br₇ теж використані рідкі середовища – монобромід сірки та розчин сірки в моноброміді сірки при 200°С. Однак, на відміну від літературних даних, за нашим методом синтезовано при 100°С. Окрім того, цей сульфідобромід отримано із сульфіду ренію(VII).

Re₃**Se**₇**Br**₇. Селенобромід ренію складу Re₃**Se**₇**Br**₇ отриманий при температурі 200°С у системах Re₂**O**₇–Se₂**Br**₂, Re₂**O**₇–Se–Se₂**Br**₂ i Re₂**O**₇–S–Se₂**Br**₂ [74]. Крім того, продукт такого ж складу був отриманий у системі Re₂**S**₇–Se₂**Br**₂ за тієї ж температури. Виходи продукту складали 98, 92, 94 та 95% відповідно. Процеси комплексоутворення у вказаних системах проходять відповідно до схем рівнянь реакцій:

 $6\operatorname{Re}_{2}O_{7} + 25\operatorname{Se}_{2}\operatorname{Br}_{2} \rightarrow 4\operatorname{Re}_{3}\operatorname{Se}_{7}\operatorname{Br}_{7} + 21\operatorname{Se}O_{2} + \operatorname{Se}\operatorname{Br}_{2} + 10\operatorname{Br}_{2}\uparrow;$

 $6Re_2O_7 + 21Se + 14Se_2Br_2 \rightarrow 4Re_3Se_7Br_7 + 21SeO_2;$

 $6Re_2O_7+21S+14Se_2Br_2 \rightarrow 4Re_3Se_7Br_7+21SO_2\uparrow;$

 $3\text{Re}_2\text{S}_7 + 7\text{Se}_2\text{Br}_2 \rightarrow 2\text{Re}_3\text{Se}_7\text{Br}_7 + 21\text{S}.$

Застосування рідких халькогенбромідних середовищ дозволило синтезувати комплекс Re₃Se₇Br₇ при 200°C замість 220-250°C із вихідних

Re₂O₇ та Re₂S₇, замість взаємодії у системах ReBr₄–Se–Se₂Br₂ і ReBr₄–Se–SeBr₄ (у середовищі SiBr₄) [17].

Re₃S₆SeCl₇. У системах Re₂O₇–Se–S₂Cl₂ та HReO₄–Se–S₂Cl₂ при 200°C вперше отримано змішаний по халькогену селеносульфідохлорид ренію складу Re₃S₆SeCl₇ – стійкий на повітрі кристалічний порошок темно-коричневого кольору

$$\begin{split} & 6\text{Re}_2\text{O}_7 + 12\text{Se} + 23\text{S}_2\text{Cl}_2 \rightarrow 4\text{Re}_3\text{S}_6\text{Se}\text{Cl}_7 + 21\text{SO}_2\uparrow + \text{SCl}_2 + 8\text{Se}\text{Cl}_2; \\ & 6\text{HReO}_4 + 5\text{Se} + 12\text{S}_2\text{Cl}_2 \rightarrow 2\text{Re}_3\text{S}_6\text{Se}\text{Cl}_7 + 7\text{SO}_2\uparrow + 3\text{H}_2\text{SO}_3 + \text{SO}\text{Cl}_2 + \text{SCl}_2 + 3\text{Se}\text{Cl}_2. \end{split}$$

Вихід продукту 95 та 91% відповідно.

Re₃**S**₅**Se**₂**Cl**₇. Згідно з нижче наведених схем рівнянь реакції, під час комплексоутворення у системі Re₂O₇–S–Se₂Cl₂ за 200°C з виходом 93% утворюється стійким до вологи повітря темно-коричневий кристалічний порошок, який ϵ – ще один вперше отриманий [76,77] селеносульфідохлорид ренію складу Re₃S₅Se₂Cl₇:

 $6\text{Re}_2\text{O}_7 + 41\text{S} + 14\text{Se}_2\text{Cl}_2 \rightarrow 4\text{Re}_3\text{S}_5\text{Se}_2\text{Cl}_7 + 21\text{SO}_2 \uparrow + 20\text{Se}.$

Re₃Se₃S₄Br₁₃. У системах Re_2O_7 –Se– S_2Br_2 і Re_2O_7 – S_2Br_2 – Se_2Br_2 при 100°С згідно з нижче представленим схем рівнянь реакцій вперше отримано селеносульфідобромід ренію складу $Re_3Se_3S_4Br_{13}$ у формі чорних кристалів:

 $6Re_2O_7 + 12Se + 26S_2Br_2 \rightarrow 4Re_3S_4Se_3Br_{13} + 21SO_2 \uparrow + 15S$

$$6\operatorname{Re}_{2}\operatorname{O}_{7} + 20\operatorname{S}_{2}\operatorname{Br}_{2} + 6\operatorname{Se}_{2}\operatorname{Br}_{2} \rightarrow 4\operatorname{Re}_{3}\operatorname{S}_{4}\operatorname{Se}_{3}\operatorname{Br}_{13} + 21\operatorname{SO}_{2} \uparrow + 3\operatorname{S}.$$

Виходи селеносульфідоброміду Re₃S₄Se₃Br₁₃ склали 97 та 95% відповідно [99].

Re₄Se₄S₄Br₁₆. Дослідження комплексоутворення у цих же системах при температурі 200°С дозволило вперше отримати ще один новий селеносульфідобромід ренію складу Re₄Se₄S₄Br₁₆ [102-103] у вигляді чорносинього кристалічного порошку з виходами 95 і 99% відповідно:

$$2\text{Re}_2\text{O}_7 + 4\text{Se} + 8\text{S}_2\text{Br}_2 \rightarrow \text{Re}_4\text{Se}_4\text{S}_4\text{Br}_{16} + 7\text{SO}_2 \uparrow + 5\text{S}.$$

$$2\text{Re}_2\text{O}_7 + 2\text{Se}_2\text{Br}_2 + 6\text{S}_2\text{Br}_2 \rightarrow \text{Re}_4\text{Se}_4\text{S}_4\text{Br}_{16} + 7\text{SO}_2 \uparrow + \text{S}.$$

У процесі взаємодії оксиду ренію(VII) з монобромідом селену при 100°С халькогенбромід не утворюється, зате одержано селенід ренію(IV).

 $4\text{Re}_2\text{O}_7+15\text{Se}_2\text{Br}_2 \rightarrow 8\text{Re}\text{Se}_2\downarrow+14\text{Se}\text{O}_2+15\text{Br}_2\uparrow$.

Якісний та кількісний склад отриманих у цій роботі халькогенгалогенідів ренію, що було визначено за допомогою рентгенфлуоресцентного аналізу, наведено у таблиці 3.3.

Таблиця 3.3 – Кількісний та якісний склад отриманих халькогенгалогенідів ренію

Сполука	ω(Re), %		ω(Se), %		ω(S), %		ω(Hal), %	
Chonyku	Експ.	Teop.	Експ.	Teop.	Експ.	Teop.	Експ.	Teop.
ReSCl ₃	57.32	57.35	_	—	9.89	9.87	32.79	32.76
ReSe ₄ Cl ₆	35.30	35.32	_	_	24.33	24.32	40.37	40.35
Re ₃ S ₇ Cl ₇	54.16	54.17	—	_	21.79	21.76	24.05	24.06
Re ₃ Se ₇ Cl ₇	41.07	41.09	40.66	40.65	_	_	18.27	18.25
Re ₃ S ₇ Br ₇	41.58	41.61	_	_	16.74	16.72	41.68	41.66
Re ₃ Se ₇ Br ₇	33.42	33.44	33.11	33.08	—	—	33.47	33.48
Re ₃ S ₆ SeCl ₇	52.93	52.96	3.79	3.74	19.78	19.76	23.50	23.53
$Re_3S_5Se_2Cl_7$	49.61	49.65	14.05	14.03	14.28	14.25	22.08	22.06
$Re_3S_4Se_3Br_{13}$	28.43	28.46	12.06	12.07	6.56	6.53	52.95	52.93
$Re_4S_4Se_4Br_{16}$	30.16	30.18	12.83	12.80	5.22	5.19	51.79	51.81

З метою перекристалізації синтезованих столук та одержання монокристалів достатнього розміру для вивчення їх структури методом РСА досліджено їх розчинність у ряді органічних розчинників.

У більшості полярних і неполярних розчинників (ацетонітрил, діетиловий ефір, гексан, ацетон) зразки сполук ренію не розчинялися ні за кімнатної температури, ні при нагріванні. У таких розчинниках, як ДМФА і ДМСО спостерігалося часткове розчинення сполук, що супроводжувалося одночасним їх розкладом. Таким чином, проведено дослідження комплексоутворення при 100 та 200°С в 44 системах (табл. 3.1): 28 з них на основі оксиду ренію(VII) Re₂O₇– Chal₂Hal₂, Re₂O₇–Chal–Chal₂Hal₂, Re₂O₇–Chal²–Chal₂Hal₂, Re₂O₇–Chal₂Hal₂, Re₂O₇–Chal₂Hal₂, Re₂O₇–Chal₂Hal₂, Re₂O₇–Chal₂Hal₂, Re₂O₇–Chal₂Hal₂, HReO₄–Chal₂Hal₂, HReO₄–Chal₂Hal₂, HReO₄–Chal₂Hal₂, HReO₄–Chal₂Hal₂, HReO₄–Chal₂Hal₂, HReO₄–Chal₂Hal₂, HReO₄–Chal₂Hal₂, HReO₄–Chal₂Hal₂, HReO₄–Chal₂Hal₂, IRe₂S₇–Chal₂Hal₂ i Re₂S₇–Hal₂. Показано, що у 34 з них утворюються тверді продукти. У 10 випадках тверді продукти не утворюються. Останнє відбувається, можливо, у зв'язку із повною розчинністю вихідних сполук ренію у халькогенгалогенідному середовищі без подальшого утворення халькогенгалогенідних сполук ренію (табл. 3.1, 3.2).

На основі хімічного складу твердих продуктів у 24 системах (табл. 3.1, 3.2), який відповідає загальному складу Re₃Chal₇Hal₇, можна припустити утворення у них триядерних кластерних халькогенгалогенідних комплексів ренію. У двох системах за 100°С утворюється триядерний кластерний халькогенгалогенід ренію загального складу Re₃Chal₇Hal₁₃. У цих же 200°C. відбувається системах. однак вже за утворення нового, чотириядерного кластерного халькогенгалогеніду ренію загального складу Re₄Chal₈Hal₁₆. У 5-ти системах отримано дві сполуки загального складу $ReSCl_3$ та $ReSe_4Cl_6$ і в одній – селенід ренію $ReSe_2$.

3.2. Особливості кристалічної будови синтезованих халькогенгалогенідів ренію за даними рентгенофазового та рентгеноструктурного аналізів

Не дивлячись на значну кількість відомих халькогенгалогенідних сполук ренію, структурні дані є далеко не для всіх з них. Основні причини: неоднорідність продуктів синтезу, їх нестійкість на повітрі, відсутність монокристалів, придатних для РСА досліджень. Остання проблема, за наявності халькогенгалогенідних сполук у вигляді дрібнокристалічних порошків, на даний час, у багатьох випадках, успішно вирішується використанням РСА за методом полікристалу з уточненням кристалічної структури методом Рітвельда [68].

Ступінь кристалічності усіх синтезованих нами халькогенгалогенідних сполук ренію виявилася достатньою для визначення основних кристалографічних параметрів і розшифровки структури методом РСА за методом полікристалу (Додаток А, рис.А.1, рис А.2, рис. А.3).

Встановлено будову 4-x нових вперше отриманих нами халькогенгалогенідів ренію i 6-ти вже відомих 3 літератури халькогенгалогенідів цього металу, які нами синтезовано іншими методами. Рентгенограми цих сполук показані на рис 3.2, 3.6.

ReSCl3. Структура ReSCl₃ (табл. 3.4, рис. 3.1) відноситься до сімейства одновимірних ланцюгових структур і близька до типу структури NbCl₄ [77-80].

Рисунок 3.1 – Вид кристалічної структури ReSCl₃ уздовж осі *с*.

Рисунок 3.2 – Експериментальні і розраховані порошкові рентгенограми ReSCl₃ (випромінювання CuKα₁). Експериментальні дані (точки) і розрахований профіль (суцільна лінія через точки) представлені разом з розрахованими бреггівськими позиціями (вертикальні риски) і різницевої кривої (нижня суцільна лінія).

Обидві структури складаються із щільноупакованих шарів Cl(Cl/S) в гексагональній упаковці, причому атоми Re(Nb) займають ¹/₄ октаедричних пустот. Викривлені октаедри Re[Cl₄S₂] мають спільні краї, утворюючи нескінченні прямі ланцюги в напрямку [010], атоми Re розташовані парами з чергуванням коротких і довгих відстаней (Re-Re). Довга відстань (Re-Re) має значення 3,598 Å, а коротка – 2,965 Å (табл. 3.5, рис. 3.3 б); порівняння з міжатомною відстанню 2,74 Å у металевому ренію вказує на наявність слабких взаємодій метал-метал.

Встановлено, що α-ReCl₄ [83] кристалізується у типі структури NbCl₄, але без уточнення атомних координат. При допущенні атомних координат, уточнених для NbCl₄ [82], відстані (Re-Re) складають 2,886 та 3,615 Å. Відстані (Re-Cl) в ReSCl₃ практично однакові для кінцевих аксіальних (2,289 Å) і місткових атомів хлору (2,274 Å), середня відстань добре узгоджується з типовими міжатомними відстанями (Re-Cl) (2,316 Å). Величина значення зв'язку між ренієм і містковими атомами сірки складає 2,436 Å, є довшою за типову міжатомну відстань (Re-S) (2,334 Å), яку наведено у [84], однак близька до суми ефективних іонних радіусів Re та S з формальними зарядами +5 та -2 відповідно: r(Re) + r(S) = 2,42Å.

Рисунок 3.3 – Типи структури для халькогенгалогенідів перехідних металів другого і третього ряду, що містять нейтральні нескінченні ланцюги.

a) NbCl₄: C2/m, a = 11.823, b = 6.823, c = 8.140 Å, β = 131.56° [77]; b) ReSCl₃: C2/m, a = 11.4950, b = 6.5626, c = 5.9938 Å, β = 95.199°; c) NbSeBr₃: дані для NbSeCl₃: P2/c, a = 6.2993, b = 6.7205, c = 11.962 Å, β = 98.71°; d) NbSel₃: C2/c, a = 7.110, b = 13.899, c = 13.688 Å, β = 99.58°; e) Nb₃Se₅Cl₇: P21/m, a = 7.599, b = 12.675, c = 8.051 Å, β = 106.27°;f) MoS₂Cl₃: P21/c, a = 6.168, b = 7.244, c = 13.345 Å, β = 116.17°[81].

Таблиця 3.4. – Дробові атомні координати і параметри ізотропного зсуву для ReSCl₃.

Положення Послідовність Вайкоффа		x	У	Z.	$B_{\rm iso}({\rm \AA}^2)$
Re	4g	0	0.2259(6)	0	0.62(8)
S	4i	0.3858(19)	0	0.146(3)	1.1(6)
Cl1	8 <i>j</i>	0.1286(6)	0.242(2)	0.3143(13)	1.3(3)
Cl2	4i	0.1115(17)	0	0.825(3)	1.2(6)

 $\delta(\text{\AA})$ ω (°) Зв'язок Re – Re 2.965(6) Re– Re– S 137.6(5) Re–S 2.436(15) Re– Re– S 137.6(5) Re–S 2.436(15)Re-Re-Cl1 92.6(4) Re–Cl1 2.289(7) Re– Re– Cl1 92.6(4) 2.289(7) Re-Re-Cl2Re–Cl1 49.3(5) Re-Cl22.274(15)Re–Re–Cl2 49.3(5) Re-Cl2S-Re-S 2.274(15) 84.8(11) S–Re 2.436(15) S-Re-Cl1 89.9(8) S–Re 2.436(15) S-Re-Cl1 86.1(7) 2.289(7) S-Re-Cl2172.2(11) Cl1–Re Cl2–Re 2.274(15)S-Re-Cl288.4(5) S-Re-Cl1 Cl2–Re 2.274(15) 86.1(7) S-Re-Cl189.9(8) S-Re-Cl288.4(5) S-Re-Cl2172.2(11) Cl1 - Re - Cl1174.7(6) Cl1 - Re - Cl293.4(8) Cl1 - Re - Cl290.1(8) Cl1 - Re - Cl290.1(8) Cl1 - Re - Cl293.4(8) Cl2 - Re - Cl298.6(12) Re– S– Re 95.2(5) Re-Cl2-Re81.4(6)

Таблиця 3.5 – Міжатомні відстані (δ) та валентні кути (ω) у структурі сполуки ReSCl₃.

Структура синтезованого нами ReSCl₃ – полімерна з лінійними ланцюгами [{ReCl₂(α -Cl)}₂(α -S)₂]. Утворення нескінченних лінійних, або зигзагоподібних ланцюгів з, або без утворення зв'язків метал-метал типова для тетрахлоридів перехідних металів. П'ять різних типів структур (TeCl₄, NbCl₄, β -MoCl₄, β -ReCl₄ та OsCl₄) віднесено до тетрахлоридів перехідних металів другого і третього ряду [86]. На основі бази "кристалографічних даних Пірсона" [82] нами ідентифіковано чотири типи структур, які утворюються халькогенгалогенідами перехідних металів другого і третього

ряду, з наступними обмеженнями: 1) тільки двоядерні кластери з чітко вираженими або слабкими взаємодіями метал-метал; 2) нескінченні одновимірні лінійні або зигзагоподібні ланцюги; 3) нейтральні ланцюги (які спостерігаються в телурохлоридах рутенію / родію [87] або $Ta_3Se_8Br_6$ [88], не розглядались). Цими типами структури є NbSeBr₃ [89], NbSeI₃ [90], Nb₃Se₅Cl₇ [91] та MoS₂Cl₃ [92]. Новий тип розшифрованої нами структури ReSCl₃ розширює це сімейство (рис. 3.3).

ReSe₄Cl₆. За даними рентгеноструктурного аналізу ця сполука (власний структурний тип) моноядерний комплексом ренію(IV) з аніоном $[\text{ReCl}_6]^{2-}$ октаедричної будови та катіоном Se_4^{2+} квадратної будови (рис. 3.4) [94, 95]. У табл. 3.6 наведено основні структурні параметри комплексу $\text{Se}_4^{2+}[\text{ReCl}_6]^{2-}$, синтезованого нами, у порівнянні з аналогічним комплексом, отриманим німецькими колегами [11].

Таблиця 3.6 – Основні кристалографічні дані та структурні параметри селенохлоридного комплексу ренію

Параметри	Експериментальні дані	Літературні дані[11]		
Ζ	4	4		
Просторова група	Pccn	Pccn		
<i>a</i> , Å	10.5800(4)	10.5720(1)		
<i>b</i> , Å	10.9108(4)	10.9150(1)		
<i>c</i> , Å	10.1497(5)	10.1500(1)		
<i>R</i> _I , %	5.06	8.30		
d (Re–Cl), Å	2.29-2.32	2.33-2.36		
d (Se–Se), Å	2.28	2.29		

Рисунок 3.4 – Будова комплексу ReSe₄Cl₆

Re₃Chal₇Hal₇. Структуру усіх синтезованих сполук загального складу Re₃Chal₇Hal₇ (де Chal – S, Se; Hal – Cl, Br) підтверджено методом Рітвельда. Згідно РСА, це триядерні іонні кластерні халькогенгалогенідні комплекси [Re₃(µ₃-Chal)(µ-Chal₂)₃Hal₆]⁺Hal⁻ (рис. 3.5, табл. 3.7) [96-99].

Рисунок 3.5 – Будова молекули триядерних кластерних халькогенгалогенідів ренію

Таблиця 3.7 – Основні кристалографічні дані триядерних кластерних халькогенгалогенідних комплексів ренію

Параметри	[Re ₃ S ₇ Cl ₆]Cl	[Re ₃ Se ₇ Cl ₆]Cl	[Re ₃ S ₇ Br ₆]Br	[Re ₃ Se ₇ Br ₆]Br	[Re ₃ S ₆ SeCl ₆]Cl	$[\text{Re}_3\text{S}_5\text{Se}_2\text{Cl}_6]\text{C}_2$
Ζ	4	4	4	4	4	4
	4[16]	4[17]	4[18]	4[17]		

Простор.	P31c	Pbcm	P31c	P31c	P31c	$p2_{1}/n$
група	P31c[16]	Pbcm[17]	P31c[18]	P31c[17]		
<i>a</i> , Å	8.759	11.811	9.274	9.479	9.007	7.864
	8.998 [16]	11.897[17]	9.256 [18]	9.476[17]		
<i>b</i> , Å		14.185			9.007	13.516
		14.168 [17]				
<i>c</i> , Å	22.575	10.176	23.465	23.797	22.535	15.430
	22.493 [16]	10.147[17]	23.413 [18]	23.796[17]		

Електронна конфігурація атомів ренію(V) d^2 дозволяє утворювати одинарні зв'язки Re(V)–Re(V) в трикутному кластерному катіоні. Один атом халькогену утворює тридентатний місток – «шапковий» ліганд μ_3 -Chal^{2–}, який додатково скріплює трикутний металевий кластер. Три атоми халькогену перхалькогенідних містків μ -Chal^{2[–]}, лежать у площині трикутника Re₃, три інших – знаходяться над цією площиною і утворюють своєрідну лунку, в якій розміщений галогенідний аніон. Кожен з атомів халькогену перхалькогенідних містків, зв'язаний з обома атомами ренію. Шість атомів галогенів пов'язаних з атомами ренію - кінцеві. Координаційне число у ренію рівне 9. Всі атоми халькогенів мають ступінь окислення -2 і не зв'язані з галогенами.

У монохалькогенгалогенідах ренію **Re**₃**S**₇**Cl**₇, **Re**₃**S**₈**7Cl**₇, **Re**₃**S**₇**Br**₇, **Re**₃**S**₈**7Br**₇ наявна вісь симетрії 3-го порядку, яка проходить через «шапковий» ліганд μ_3 -Chal²⁻, центр трикутного металоостову Re₃ (перпендикулярно його площині) та Hal-аніон.

Гетерохалькогенгалогенідні кластерні комплекси **Re**₃**S**₅**Se**₂**Cl**₇ та **Re**₃**S**₆**SeCl**₇, у зв'язку із ізоморфним заміщенням атомів сірки на селен в перхалькогенідних фрагментах μ -Chal₂²⁻, втрачають вісь симетрії 3-го порядку. З урахуванням заселеності позицій (Chal–Chal) із співвідношенням S/Se від 30/70 до 80/20 % склад сполуки **Re**₃**S**₅**Se**₂**Cl**₇ більшою мірою відповідає формулі [Re₃(μ ₃-S)(μ -S_{1.2}Se_{0.8})₃Cl₆]⁺CГ. «Шапковий» атом сірки μ ₃-S²⁻ займає вершинно-пірамідальне положення і у цій позиції заміщення сірки
на селен не зафіксовано. Ступінь заміщення сірки на селен у перхалькогенідних містках комплексу $Re_3S_5Se_2Cl_7$ також показує, що селен легше вбудовується у *транс*-положення по відношенню до μ_3 -S^{2–}-ліганду, оскільки атоми сірки в цих положеннях більш лабільні. У комплексах **Re**₃S₅Se₂Cl₇ та **Re**₃S₆SeCl₇ вперше зафіксовано спільну координацію атомів ренію атомами сірки та селену в містках μ -SSe^{2–}.

Відстань (Re–Re) у сполуках складає від 2,692 до 2,755Å (табл. 3.8), що характеризує одинарний зв'язок метал–метал. Середні довжини зв'язків (Re– Chal) не еквівалентні для різних типів атомів халькогенів. Найкоротші з них – зв'язки (Re–µ₃-Chal^{2–}); перхалькогенідні ліганди координовані так, що довжини зв'язків (Re–µ-Chal_{цис}[–]) (для атомів халькогенів, які находяться в площині кластера) довші, ніж зв'язки (Re–µ-Chal_{транс}[–]) (для атомів халькогенів, які находяться в площині кластера) довші, ніж зв'язки (Re–µ-Chal_{транс}[–]) (для атомів халькогенів, які знаходяться в *транс*-положенні по відношенню до µ₃-Chal^{2–} ліганду). Це притаманне усім комплексам (табл. 3.8).

Окремо слід розглянути взаємодію аніонного атому галогену, що знаходиться у порожнині між трьома атомами халькогену перхалькогенідних містків, розташованих в *транс*-положенні по відношенню до «шапкового» ліганду μ_3 -Chal^{2–} (рис.3.5). Для усіх комплексів середня відстань Hal₁– Chal_{транс} майже на 1 Å менша суми ван-дер-ваальсових радіусів відповідних халькогенів і галогену, що свідчить на користь слабкого вторинного зв'язування, на яке накладається електростатичне притягання катіон - аніон.

Таблиця 3.8 – Основні міжатомні відстані в структурах триядерних кластерних халькогенгалогенідів ренію

d, Å	[Re ₃ S ₇ Cl ₆]Cl	[Re ₃ Se ₇ Cl ₆]Cl	[Re ₃ S ₇ Br ₆]Br	[Re ₃ Se ₇ Br ₆]Br	[Re ₃ S ₆ SeCl ₆]Cl	[Re ₃ S ₅ Se ₂ Cl ₆]Cl
Re–Re	2.698	2.740-2.755	2.693-2.704	2.737-2.754	2.692-2.703	2.693-2.704
	2.699 [16]	2.742[17]	2.693 [18]	2.745 [17]		
Re–Hal	2.377	2.40-2.42	2.54	2.45-2.63	2.322-2.433	2.359-2.398
	2.398[16]	2.406[17]	2.534 [18]	2.571[17]		

Re-	2.406	2.50-2.60	2.362-2.453	2.45-2.71	2.343-2.474	2.394-2.548
Chal	2.33-2.42 [16]	2.551[17]	2.404 [18]	2.538[17]		
Re-µ3-	2.466	2.45	2.347-2.357	2.633	2.300-2.381	2.318-2.335
Chal	2.33 [16]	2.460 [17]	2.353 [18]	2.473 [17]		
Chal–	2.04	2.32	2.05	2.35	2.084-2.095	2.125-2.238
Chal	2.04 [16]	2.320[17]	2.056 [18]	2.319[17]		

Таким структурні дослідження чином, синтезованих нами халькогенгалогенідів ренію Re₃S₇Cl₇, Re₃Se₇Cl₇, Re₃S₇Br₇, Re₃Se₇Br₇, Re₃S₅Se₂Cl₇ та Re₃S₆SeCl₇ показали, що вихідний реній(VII) електронної конфігурації $5d^0$ в оксиді Re_2O_7 або сульфіді Re_2S_7 , взаємодіючи з різними рідкими неводними середовищами галогенідів халькогенів з надлишком халькогену при 200°С, відновлюється до п'ятивалентного стану $5d^2$. При формується кластерний металоостов [Re₃Chal₇] з одинарними цьому зв'язками Re(V)–Re(V) з утворенням сімейства триядерних молекулярних іонних кластерних халькогенгалогенідних комплексів загального складу Re₃Chal₇Hal₇ та будови [Re₃(µ₃-Chal)(µ-Chal₂)₃Hal₆]⁺Hal⁻ (де Chal – S, Se; Hal – Cl, Br).

Re₃Se₃S₄Br₁₃. Рентгенограма вперше отриманого нами селеносульфідоброміду ренію складу Re₃Se₃S₄Br₁₃ доводить однофазність зразків сполуки (рис. 3.6).

 $Re_3Se_3S_4Br_{13}$

Дослідження показали, що кристалічна структура цього халькогенгалогеніду може бути описана як тривимірний пакет ізольованих триядерних кластерних катіон-аніонних комплексів $[\text{Re}_3(\mu_3-S)(\mu-S)_3(\text{SeBr}_2)_3\text{Br}_6]^+\text{Br}^-$ (рис. 3.7, 3.8) [100]. Три атоми ренію утворюють майже рівносторонній трикутник Re3 з «шапковим» атомом-лігандом μ_3 -S²⁻ і трьома містковими атомами-лігандами µ-S²⁻. Таким чином, від триядерних кластерних халькогенгалогенідів ренію загального складу Re₃Chal₇Hal₇, що були описані вище і містять у своїй структурі кластерний металоостов [Re₃Chal₇] або [Re₃(µ₃-Chal)(µ-Chal₂)₃], відрізняється містить комплекс $Re_3Se_3S_4Br_{13}$ тим, що кластерний [Re₃Chal₄] або [Re₃(μ_3 -Chal)(μ -Chal)₃]. Місця металлоостов y координаційному оточенні кожного з атомів ренію, що звільнилися за рахунок перетворення [Re₃Chal₇] \rightarrow [Re₃Chal₄], займають молекули-ліганди SeBr₂.

Рисунок 3.7 – Будова молекули селеносульфідобромиду ренію Re₃Se₃S₄Br₁₃

Основні кристалографічні дані комплексу Re₃Se₃S₄Br₁₃ та теплові параметри його атомів наведені у таблицях 3.9 та 3.10 відповідно.

Рисунок 3.8 – Укладка молекул комплексу Re₃Se₃S₄Br₁₃ у кристалі Таблиця 3.9 – Основні кристалографічні дані комплексу Re₃Se₃S₄Br₁₃

Параметри	Значення
Ζ	4
Просторова група	Pnma
<i>a</i> , Å	14.0301(4)
<i>b</i> , Å	17.7909(4)
<i>c</i> , Å	10.8596(3)

	x	у	Z	$U_{ m iso}\!/U_{ m eq}$
Re1	0.21474 (19)	0.17588 (16)	0.0557 (3)	0.00633
Re2	0.1896 (3)	0.25000	0.8473 (4)	0.00633
Se1	0.2886 (4)	0.0538 (3)	0.1450 (6)	0.01267
Se2	0.2346 (6)	0.25000	0.6168 (7)	0.01267
S 1	0.2004 (8)	0.6640 (8)	0.3862 (9)	0.01900
S2	0.0864 (7)	0.25000	0.0095 (11)	0.01900
S 3	0.3270 (6)	0.25000	0.1440 (11)	0.01900
Br1	0.0883 (5)	0.1565 (4)	0.7270 (6)	0.01267
Br2	0.1080 (4)	0.0619 (3)	0.0069 (7)	0.01267
Br3	0.1354 (5)	0.0068 (4)	0.4810 (6)	0.01267
Br4	0.1525 (4)	0.6537 (4)	0.0825 (6)	0.01267
Br5	0.1634 (5)	0.1563 (4)	0.2763 (5)	0.01267
Br6	0.4324 (5)	0.0815 (4)	0.2457 (8)	0.01267
Br7	0.4657 (6)	0.25000	0.0195 (9)	0.01267

Таблиця 3.10 – Атомні координати та ізотропні або еквівалентні параметри ізотропного зміщення (Å2) для Re₃Se₃S₄Br₁₃

Без урахування зв'язків Re(V)-Re(V) координаційні поліедри атомів ренію перебувають у формі трьох викривлених октаедрів $Re[S_3Br_2(SeBr_2)]$. Середня відстань (Re–Re) (2.655 Å) у комплексі дещо довша (табл. 3.11) за розраховане значення довжини для простого зв'язку (Re-Re) (2.609 Å), внаслідок великого розміру навколишніх лігандів, що також характерно і для шестиядерних кластерних халькогенгалогенідів ренію [101]. Однак ця відстань коротша, ніж у триядерних кластерних халькогенгалогенідах складу $Re_3Chal_7Hal_7$ (2.692-2.755Å, див. табл. 3.8). Якщо у комплексах $Re_3Chal_7Hal_7$ зв'язки $Re-\mu_3$ -Chal є найкоротшими серед усіх зв'язків (Re–Chal), то у новому триядерному халькогенгалогеніді $Re_3Se_3S_4Br_{13}$ вони найдовші (табл. 3.11 і рис. 3.7). Середня відстань (Re–Br) (2.553 Å) у комплексі $Re_3Se_3S_4Br_{13}$ співпадає із такими самими у кластерах Re₃S₇Br₇ і Re₃Se₇Br₇ (2.54 і 2.45-2.63 Å відповідно).

Таблиця 3.11 – Основні довжини зв'язків у молекулі триядерного кластерного селеносульфідоброміду ренію Re₃Se₄S₃Br₁₃

Зв'язок	$\delta(\text{\AA})$	Зв'язок	$\delta(\text{\AA})$	Зв'язок	$\delta(\text{\AA})$
Re1–Re1	2.637	Re1–Se1	2.595	Re2–Se2	2.596
Re1–Re1	2.640	Re1–Se1	2.619	Re2–Br1	2.548
Re1–Re2	2.643	Re1–Br2	2.560	Re2–Br1	2.562
Re1–Re2	2.703	Re1–Br2	2.576	Se1–Br3	2.339
Re1–S1	2.202	Re1–Br5	2.526	Se1–Br3	2.365
Re1–S1	2.212	Re1–Br5	2.548	Se1–Br6	2.347
Re1–S2	2.274	Re2–S1	2.205	Se1–Br6	2.363
Re1–S2	2.288	Re2–S1	2.214	Se2–Br4	2.363
Re1–S3	2.257	Re2–S2	2.280	Se2–Br4	2.365
Re1–S3	2.267	Re2–S2	2.294	S3–Br7	2.370
		Re2–Se2	2.582	S3–Br7	2.394

Таким чином, при досить низькій, як для утворення триядерних кластерів ренію, температурі синтезу 100°С (зазвичай 200°С), у рідкому халькогенгалогенідному середовищі з надлишком халькогену вперше вдалося сформувати триядерне кластерне реній-халькогенідне ядро [Re₃(μ_3 -Chal)(μ -Chal)₃] або [Re₃Chal₄]. При цьому, як і у разі утворення Re₃Chal₇Hal₇, реній електронної конфігурації 5d⁰ в оксиді Re₂O₇ відновлюється до п'ятивалентного стану 5d² з утворенням одинарних зв'язків Re(V)–Re(V).

Re4Se4S4Br16. За PCA результатами нами вперше отримано чотириядерний селеносульфідобромід ренію Re₄Se₄S₄Br₁₆ ізоструктурний з відомими ізольованими молекулярними чотирма чотириядерними кластерними халькогенгалогенідами ренію будови $\operatorname{Re}_4(\mu_3 -$ Chal)₄(ChalHal₂)₄Hal₈ і може бути представлений як $Re_4(\mu_3-S)_4(SeBr_2)_4Br_8$ (рис. 3.9) [102-104].

Рисунок 3.9 – Молекула $Re_4(\mu_3-S)_4(SeBr_2)_4Br_8$ з виділеним тетраедром Re_4

Його основним структурним блоком є кубанове кластерне ядро [Re₄(μ_3 -S)₄], утворене практично правильним тетраедром Re₄ з одинарними зв'язками Re(IV)–Re(IV) 2.698 та 2.738Å, найкоротшими у порівнянні із відомими ізоструктурними комплексами Re₄Chal₈Hal₁₆ (табл. 3.12). Ці зв'язки цілком порівнювані з одинарними зв'язками Re(V)–Re(V) у вище згаданих комплексах Re₃Chal₇Hal₇ (2.692-2.755Å, див. табл. 3.8) та Re₃Se₃S₄Br₁₃ (2.637-2.703 Å, див. табл. 3.11).

Кожна трикутна грань тетраедра Re₄ координована містковими μ_3 -Sлігандами з довжиною зв'язків Re–S 2.240, 2.293 та 2.332 Å, один з яких співпадає, а дві інші є коротшими відповідних довжин зв'язків у телуросульфідохлоридному комплексі Re₄(μ_3 -S)₄(TeCl₂)₄Cl₈ (табл. 1.1). Довжини зв'язків реній – кінцевий ліганд Br[–] на 0.038-0.058 Å коротші, ніж аналогічні в телуробромідному комплексі Re₄(μ_3 -Te)₄(TeBr₂)₄Br₈ (табл. 1.1). Природним виглядає збільшення на ~ 0.25Å довжини координаційного зв'язку (Re–Se) в отриманому нами селеносульфідоброміді ренію порівняно з ковалентним зв'язком (Re–Se) в телуроселенідохлоридному комплексі Re₄(μ_3 -Se)₄(TeCl₂)₄Cl₈ (табл. 1.1).

d, Å	Re4(µ3-S)4-	$Re_4(\mu_3-S)_4-$	Re ₄ (µ ₃ -Se) ₄ -	$Re_4(\mu_3-Te)_4-$	$Re_4(\mu_3-Te)_4-$
	(SeBr ₂) ₄ Br ₈	(TeCl ₂) ₄ Cl ₈	(TeCl ₂) ₄ Cl ₈	(TeCl ₂) ₄ Cl ₈	$(TeBr_2)_4Br_8$
Re–Re	2,698(3)	2,706	2,737	2,783	2,774
	(2×)	(2×) 2,742	(2×) 2,785	(2×) 2,843	(2×) 2,831
	2,738(3)				
Re–µ ₃ -Chal	2,240(14)	2.332	2.433	2.600	2.585
	2,293(11)	2.346	2.437	2.602	2.592
	2,332(12)	2.349	2.449	2.613	2.605
Re–Chal	2,675(5)	2.725	2.724	2.709	2.738
Re–Hal	2,582(4)	2.427	2.443	2.474	2.625
	2,587(5)	2.443	2.450	2.479	2.640

Таблиця 3.12 – Основні міжатомні відстані в ізоструктурних чотириядерних кластерних халькогенгалогенідах ренію.

Таким чином, спостерігаються аналогії у будові сполук Re₄Se₄S₄Br₁₆ та Re₃Se₃S₄Br₁₃, які синтезовані в одному і тому ж середовищі: суміші S₂Br₂ + SeBr₂, однак, при температурах 100 і 200°C відповідно. Зв'язки (Re–Re) описано вище. Середні довжини зв'язків (Re– μ_3 -S) складають 2.288Å у Re₃Se₃S₄Br₁₃ та 2.281Å у Re₄Se₄S₄Br₁₆. Довжина координаційного зв'язку (Re \rightarrow Se) у триядерному комплексі складає 2.582-2.619Å, а у чотириядерному – дещо довша: 2.675 Å. Обернена залежність спостерігається для довжин зв'язку (Se–Br) у молекулах-лігандах: у чотириядерному комплексі – коротші (2.324 Å), а у триядерному – довші (2.339-2.394 Å). Однак, у цілому, комплекс Re₃Se₃S₄Br₁₃ можна віднести до структурного попередника Re₄Se₄S₄Br₁₆, так як обидва комплекси містять однакові фрагменти структури: [Re₃(μ_3 -S)], по два ліганди Br⁻ і по одному ліганду SeBr₂ біля кожного з атомів ренію.

Інші детальні результати структурних досліджень вперше отриманого нами чотириядерного кластерного молекулярного комплексу Re₄(µ₃-S)₄(SeBr₂)₄Br₈ наведено у таблицях 3.13–3.15.

Таблиця 3.13 – Деталі експерименту та кристалографічні дані для Re₄Se₄S₄Br₁₆

Параметри	Значення
Просторова група – послідовність Вайкоффа / символ Пірсона	$I-4 (N_{2} 82) - g^{7} / tI56$
Структурний тип	$Re_4Te_4S_4Cl_{16}$
M_r / Z	2467.4 / 2
Параметри елементарної комірки <i>a</i> , <i>c</i> (Å)	10.96292(12), 13.22261(16)
Об'єм комірки $V(Å^3)$	1589.17(3)
Розрахована густина D _x (г/см ³)	5.156
Коефіцієнт поглинання µ (Си Ка) (мм ⁻¹)	60.35
Кількість виміряних рефлексів	545
Кількість параметрів уточнення	38
Параметри профілю η_0 , U, V, W	0.545(5), 0.0598(18), -0.0358(12), 0.0173(2)
Параметри асиметрії As1, As2	0.074(1), 0.0210(3)
Нульове значення 20 (°)	-0.0043(4)
Фактори достовірності:	
$R_{\mathrm{I}} = \Sigma I_{obs} - I_{calc} / \Sigma I_{obs} $	0.0340
$R_{ m F} = \Sigma F_{obs} - F_{calc} \ / \ \Sigma F_{obs} $	0.0297
$R_{\rm p} = \Sigma y_i - y_{c,i} / \Sigma y_{\rm i}$	0.0470
$R_{\rm wp} = [\Sigma w_i y_i - y_{c,i} ^2 / \Sigma w_i y_i^2]^{1/2}$	0.0615
$R_{\rm exp} = [n - p / \Sigma w_i y_i^2]^{1/2}$	0.0310
$\chi^2 = \{R_{ m wp}/R_{ m exp}\}^2$	3.94

Таблиця 3.14 – Правильна система точок (ПСТ), координати (x, y, z) та параметри ізотропного зміщення атомів (B_{iso}) у структурі сполуки Re₄Se₄S₄Br₁₆

Атом	ПСТ	X	у	Z.	$B_{\rm iso}$ (Å ²)
Re	8 <i>g</i>	0.02933(18)	0.11952(17)	0.42574(14)	0.64(4)
Se	8 <i>g</i>	0.2008(4)	0.2810(5)	0.3730(3)	1.15(13)

S	8 <i>g</i>	0.4534(13)	0.3402(9)	0.0953(8)	2.3(3)
Br1	8 <i>g</i>	0.0469(5)	0.1494(4)	0.2326(3)	1.29(12)
Br2	8 <i>g</i>	0.1624(4)	0.4408(4)	0.0879(4)	1.96(15)
Br3	8 <i>g</i>	0.2272(4)	0.1198(5)	0.0165(3)	2.36(13)
Br4	8 <i>g</i>	0.3748(4)	0.1779(3)	0.3205(3)	1.73(11)

Таблиця 3.15 — Міжатомні відстані (δ) та валентні кути (ω) у структурі сполуки Re₄Se₄S₄Br₁₆

Зв'язок	$\delta(\text{\AA})$	ω (°)	l .	ω (°)	
Re - 1S	2.240(14)	Re–Re–Re	60.48(10)	Se–Re–S	148.7(7)
Re - 1S	2.293(11)	Re–Re–Re	59.04(10)	Se–Re–S	94.0(5)
Re - 1S	2.332(12)	Re–Re–Se	109.1(2)	Se–Re–S	93.1(5)
Re – 1Br1	2.582(4)	Re–Re–S	102.2(6)	Se–Re–Br1	66.8(2)
Re – 1Br2	2.587(5)	Re–Re–S	52.0(4)	Se–Re–Br2	68.5(2)
Re – 1Se	2.675(5)	Re–Re–S	53.0(4)	S–Re–S	105.5(8)
Re - 1Re	2.698(3)	Re–Re–Br1	139.3(2)	S–Re–S	105.9(9)
$P_0 \rightarrow P_0$	2.000(3)	Re–Re–Br2	137.4(2)	S-Re-Br1	89.5(6)
R = 2R t	2.730(3)	Re–Re–Re	60.48(10)	S–Re–Br2	88.5(5)
Se - 1Br4	2.323(0)	Re–Re–Se	144.1(3)	S–Re–S	102.5(7)
		Re–Re–S	55.4(4)	S-Re-Br1	159.5(6)
		Re–Re–S	101.9(5)	S–Re–Br2	85.5(5)
		Re–Re–S	52.3(4)	S–Re–Br1	86.3(5)
		Re–Re–Br1	98.11(19)	S–Re–Br2	160.7(6)
Se-1Br3	2.325(6)	Re–Re–Br2	143.9(2)	Br1–Re–Br2	80.9(2)
		Re–Re–Se	147.7(2)	Re–Se–Br3	109.6(3)
		Re–Re–S	53.7(4)	Re–Se–Br4	109.4(3)
		Re–Re–S	54.4(4)	Br3–Se–Br4	101.1(3)
		Re–Re–S	99.7(5)	Re–S–Re	72.6(4)
		Re–Re–Br1	143.1(2)	Re–S–Re	72.3(4)
		Re–Re–Br2	99.2(2)	Re–S–Re	74.3(4)

Таким чином, знизивши температуру синтезу до 200°С, на відміну від твердофазних взаємодій при 350–550°С, вперше у рідкому халькогенгалогенідному середовищі з надлишком халькогену у складі халькогенгалогеніду Re₄Se₄S₄Br₁₆ нам вдалося сформувати чотириядерне кластерне кубанове реній-халькогенідне ядро [Re₄(μ_3 -Chal)₄]. Скоріш за все, це стало можливим через те, що вже за 100°C в тому ж середовищі формується його структурний попередник — триядерний кластерний халькогенгалогенід Re₃Se₃S₄Br₁₃, в якому є готові структурні блоки для утворення комплексу Re₄Se₄S₄Br₁₆, а саме: [Re₃(μ_3 -S)(SeBr₂)₃Br₆]⁷⁺. При цьому реній електронної конфігурації *5d*⁰ в оксиді Re₂O₇ відновлюється до чотиривалентного стану *5d*³ з утворенням одинарних зв'язків Re(IV)–Re(IV).

3.3. Особливості електронної будови синтезованих сполук ренію

Електрону будову синтезованих халькогенгалогенідів ренію вивчали на прикладі моноядерного сульфідохлориду ReSCl₃, триядерного Re₃Se₃S₄Br₁₃ та чотириядерного Re₄Se₄S₄Br₁₆ селеносульфідобромідів ренію.

ReSCl₃. З метою вивчення залежності між кристалічною та електронною структурою, перш за все, було розраховано електронну густину станів (ЕГС). На рис. 3.10 наведені повна ЕГС та парціальна ЕГС станів 5d Re, 3p S та Cl, які є переважаючими станами в енергетичному інтервалі, показаному на малюнку.

Рис. 3.10 – Повна і орбітально-проектована густина станів ЕГС ReSCl₃ для примітивної елементарної комірки (10 атомів). Нуль шкали енергії

відповідає розрахованому положенню рівня Фермі (E_F). Внаслідок практично повної симетричності підсистем електронів зі спіном «вгору» і зі спіном «донизу», криві ЕГС показані тільки для електронних спінів, орієнтованих «вгору».

Розрахунки ЕГС свідчать про металічний характер ReSCl₃. Основний внесок у піки валентної зони та зони провідності поблизу рівня Фермі (E_F) внасять *5d*-орбіталі Re, які є гібридизованими з *3p*-орбіталями від атомів хлору та сірки, в той час як піки біля дна валентної зони показують, в основному, внески від *3p*-орбіталей атомів хлору та сірки.

3 ЕГС за E_f (N(E_f) = 1,22 станів/(примітивна комірка, eB)) можна вивести коефіцієнт електронної теплоємності Зоммерфельда (γ = 1,44 мДж /K² моль Re), який близький до значення 2,3 мДж /K² моль для чистого ренію. Можна відмітити, що графіки ЕГС, отримані за допомогою підходу LSDA + U з ефективним кулонівським потенціалом відштовхування U=2,8 eB для 5*d*електронів Re, майже ідентичні поблизу E_f вище згаданим, однак N(E_f)= 0,74 станів / (примітивна комірка, eB) дещо менша.

З урахуванням складових елементів у ReSCl₃ та у споріднених сполуках були визначені подібні металеві характеристики, наприклад для всіх тетрагалогенідів технецію [105] і для гіпотетичних недеформованих структур TcS₂, ReS₂ та ReSe₂ [106]. ReSe₂, який кристалізується у викривленій кристалічній структурі 1Т, є прямозонним напівпровідником [106, 107]. Однак, легування хлором приводить до зміщення рівня Фермі до дна зони провідності, що свідчить про легування донорною домішкою (*n*-тип) [108]. Для ReS₂ з гіпотетично невикривленою структурою 3R (типу CdCl₂) і відстанями (Re-Re) 3,20 Å (тобто без утворення зв'язків метал-метал) було зроблено висновок [106], що висока ЕГС на рівні Фермі у поєднанні з електрон-фононними взаємодіями пояснює нестійкість цієї структури. Утворення зв'язків (Re-Re) знижує повну енергію системи, і стійка спотворена структура 1Т проявляє напівпровідникові властивості [107]. Отже, можна припустити, що структура ReSCl₃ з відносно високою ЕГС за E_f, але із слабкими взаємодіями метал-метал, знаходиться на межі стійкості.

На наступному етапі було охарактеризовано утворення хімічних зв'язків у реальному просторі у ReSCl₃. Результатом інтегрування електронної густини по резервуарам QTAIM (квантова теорія атомів у молекулах, яка запропонована Байдером) [109] стали наступні електронні заселеності: Re:73,45e, S: 16,41e, Cl1: 17,39e, Cl2: 17,36e та ефективні атомні заряди Re^{+1,55}S^{-0,41}(Cl1^{-0,39})₂Cl2^{-0,36}. Розподіл індикатора локалізованості електронів (ELI-D, γ) уздовж ланцюжка (рис. 3.11) показує чітко виражені сферичні оболонки високого ELI-D навколо більш електронегативного з атомів S та Cl, візуалізуючи поляризацію електронної густини між сірою / хлором і ренієм у напрямку до атомів S / Cl. Підвищені значення ELI-D чітко видно між парами ренію з короткою відстанню (Re-Re), що підтверджує наявність слабких взаємодій метал-метал.

Рисунок 3.11 – Індикатор локалізованості електронів (ELI-D, γ) у ReSCl₃. Розподіл ELI-D у площинах гратки: а) місткові зв'язки (Re-S-Re) та)(Re-Cl₂-Re); б) (Re-Cl1)

Кількісні дані для утворення хімічних зв'язків у ReSCl₃, отримані у результаті топологічного аналізу, наведено у табл. 3.16 і на рис.3.12

Атоми та атомні		Обрані резервуари	Заселеність	Індекс полярності
заряди:(QTAIM/	ELI-D	резервуарів	зв'язку р, відсоток
ELIE	BON		q/e^{-}	переважного вкладу
Re	+1.55 /	ядро	57.56	
	+3.40	передостання оболонка	13.83	
		Re-Re дисинаптичний		0.01
		резервуар (DB)	0.412	
S	-0.41 /	ядро	10.07	
	-1.20	неподілена пара (LP)	1.6	
		LP	1.95	
		S-Re	1.77	0.56, 78.0% S
		S-Re	1.81	0.57, 78.6% S
Cl1	-0.39 /	ядро	10.07	
	-0.68	LP	3.16	
		LP	3.54	
		Cl1–Re DB	0.91	0.58, 78.9% Cl
C12	-0.36 /	ядро	10.07	
	-0.84	LP	2.78	
		LP	2.87	
		Cl2–Re DB	1.06	0.64, 82.1% Cl
		Cl2–Re DB	1.06	0.64, 82.2% Cl

Таблиця 3.16 – Чисельний аналіз топології ELI-D для ReSCl₃

Рисунок 3.12 – Резервуари ELI-D для ReSCl₃. а) Дисинаптичні резервуари та їх заселеність: 1. Re–Re (0,412 е); 2. два S–Re (1,81е и 1,77е); 3. Cl1–Re (0,91е); 4. два Cl2–Re (1,06 е). б) Орієнтація двох моносинаптичних

резервуарів, що показують взаємодію між ланцюжками: 1. S неподілена пара (1,60 е); 2.Сl2 неподілена пара (2,78 е).

Інтегрування електронної густини по резервуарам ELI-D і віднімання чисел електронів для нейтральних атомів дозволяють отримати так званий баланс, що базується на ELI ступенів окиснення (ELIBON) [110]: Re^{+3,40} - S⁻ ^{1,20} [Cl1^{-0,68}]₂Cl2^{-0,84}. Зв'язки (Re–S) та (Re–Cl) є полярними ковалентним зв'язками, на що вказує значення близько 0,6 показника полярності зв'язків [111], у той час як слабкий зв'язок (Re–Re) (0,206 е на Re) є неполярним. Зв'язок (Re-S) має характер майже одинарного зв'язку, який утворюють у середньому 0,9 пари зв'язуючих електронів, і який поляризований у напрямку до атому S з полярністю 0,57. Характер зв'язку (Re–Cl1) близький до іонного: тільки 0,455 пари зв'язуючих електронів утворюють частково одинарний зв'язок, і два моносинаптичних резервуари (неподілені пари) мають збільшену заселеність (6,7 е). Хоча містковий атом Cl2 має майже заповнену третю оболонку (17,84 e), характер двох зв'язків (Cl2–Re) у значній мірі є полярним ковалентним: дві пари зв'язуючих електронів (по 1,06е на пару) утворюють два частково одинарних зв'язки, які сильно поляризові у напрямку до атому Cl2 з полярністю 0,64. Взаємодія між ланцюжками у ReSCl₃ внаслідок дисперсійних сил зображено на прикладі місткових атомів Cl2 та S (рис. 3.12 б). Резервуари ELI-D 1 та 2 відповідають «зв'язкам» (S-Сl2) та (Cl2–S).

Аттрактор ELI-D номер 1 розташований на відстані 0,94 Å від S та 2,78 Å від Cl2 з високою ексцентричністю (відстань, яка перпендикулярна до лінії S-Cl2) 0,5 Å. Аттрактор ELI-D номер 2 розташований на відстані 0,85 Å від Cl2 та 2,78 Å від S з ексцентричністю 0,34 Å. Перетин резервуара ELI-D номер 1 резервуарами електронної густини (QTAIM) та інтегрування електронної густини за отриманим резервуаром, що перетинається, показують, що S вносить 99,6% вклад у заряд у резервуарі номер 1 «зв'язку» (Cl2–S) ELI-D. У випадку «зв'язку» (Cl2–S) така ж методика дозволила

встановити майже 100% внесок Cl2 у заряд у резервуарі номер 2 ELI-D (Cl2– S). Ці резервуари ELI-D є моносинаптичними і описують неподілені пари S та Cl2 із заселеністю 1,6 та 2,78е відповідно.

Re₃Se₃S₄Br₁₃ Для цієї сполуки, у зв'язку з відносною складністю її кристалічної структури, було проведено комплексну розшифровку і уточнення кристалічної структури. На основі координат атомів, отриманих було після розшифровки, квантово-хімічними методами проведено оптимізацію молекули, а потім оптимізовані відстані було «м'яко» зафіксовано у процесі уточнення кристалічної структури методом Рітвельда (рис. 3.7). На другому етапі було проведено аналіз хімічних зв'язків на основі результатів квантово-хімічних розрахунків. Інтегруванням електронної густини по резервуарам QTAIM вдалося розрахувати ефективні заряди атомів [Re^{+1,23}]₃[Se^{+0,47}]₃[S^{-0,33}]₄[Br^{-0,29}]_{13.} Інтегрування електронної густини по резервуарам ELI-D і віднімання чисел електронів для нейтральних атомів дозволяють отримати так званий баланс ступенів окиснення, що базується на ELI (ELIBON) [17]: [Re^{+3,12}]₃[Se^{+1,38}]₃[S^{-1,20}]₄[Br^{-0,67}]₁₃. Зв'язки (S-Re), (Br-Re) та (Br-Se) є полярними ковалентними зв'язками, у той час як слабкі зв'язки (Re-Re) (0,510 та 0,503е для двох дисинаптичних резервуарів (Re1-Re2) та 0,746е та для дисинаптичних резервуарів (Re1–Re1) є неполярними ковалентними зв'язками метал-метал. «Зв'язок» (Br7-S3) є повністю іонним зв'язком: перетин резервуару ELI-D резервуарами електронної густини (QTAIM) та подальше інтегрування електронної густини показують 100% внесок атома Br7, однак заряд Br7 дорівнює -0,2 у порівнянні з ідеальним Br⁻¹.

Re4Se4S4Br₁₆. Відповідно до розрахунків густини станів (рис. 3.13) сполука Re4Se4S4Br₁₆ є напівпровідником.

Рисунок 3.13 – Повна та орбітально-проектована ЕГС Re₄Se₄S₄Br₁₆ для примітивної елементарної комірки

Рівень Фермі розташований ближче до дна зони провідності, а ширина забороненої зони складає 1,47 еВ, що відповідає довжині фотона $\lambda = 844$ нм і сірувато-чорному кольору сполуки. Для наведеного інтервалу енергій домінуючий внесок у загальну густину станів у валентній зоні надають 4*p*-электрони брому, що гібридизовані з 5*d*-електронами ренію та 4*p*-электронами селену, а в області –5 еВ – 3*p*-електрони сірки, які гібридизовані з 5*d*-електронами ренію є 5*d*-зона ренію.

Перший етап розгляду хімічного зв'язку у реальному просторі проводили за допомогою топологічного аналізу електронної густини відповідно до квантової теорії атомів у молекулах (QTAIM) [112], використовуючи програму DGrid [113, 114]. Інтегрування електронної густини по QTAIM-просторам дозволило отримати заселеність електронів і відповідні ефективні заряди на атомах: $Re^{+1.2}Se^{+0.5}S^{-0.3}[Br^{-0.35}]_4$, що добре узгоджується з електронегативністю елементів. Характер зв'язків металметал у $Re_4Se_4S_4Br_{16}$ у цілому подібний до такого у сполуці Mo₄S₄Br₄ з кластером [Mo₄(μ_3 -S)₄] [115]. Якщо припустити нейтральність чотирьох лігандів SeBr₂ та іонної моделі для $Re_4(\mu_3$ -S)₄Br₈ можна вважати, що чотири атоми ренію віддають 16 електронів на утворення зв'язків з лігандами S та Br, а 12 електронів, що залишилися у кластері Re₄ утворюють одинарні зв'язки (Re–Re) (по два електрони на шість ребер тетраедра).

3.4. ІЧ-спектроскопія та спектроскопія КРС

фрагментів Для встановлення структури синтезованих рентгеноаморфних халькогенгалогенідів ренію, записані віднесені та інфрачервоні спектри і спектри комбінаційного розсіювання світла. Комплексне використання цих методів дозволило дати більш повну характеристику отриманих сполук, встановити наявність тих, чи інших зв'язків і, таким чином, зробити висновки про їх будову. Характер спектрів досліджуваних складний. Цe обумовлено сполук складом халькогенгалогенідів ренію, іноді – їх низькою симетрією. Ця їх особливість дозволила провести повноцінний теоретико-груповий аналіз, тому не віднесення ІЧ-смуг та КР-ліній виконано порівнянням експериментальних та літературних даних з використанням фрагментарного підходу. Однак і тут виникли певні труднощі, оскільки віднесення ліній та смуг поглинання у ряді сполук може супроводжуватися перекриттям областей частот коливаны зв'язків різних структурних груп. Спектри записані в однакових умовах, що дозволило відстежити зміну інтенсивностей поглинання смуг i використовувати отримані дані для їх інтерпретації. Виходячи з умов синтезу і складу продуктів, що утворюються, можна припускати наявність у спектрах смуг поглинання та ліній комбінаційного розсіювання валентних коливання зв'язків v(Re-Hal), v(Re-Chal), v(Chal-Hal), v(Chal-Chal), а також ряду деформаційних коливань: δ (Hal–Chal–Hal), δ (Hal–Re–Hal), δ (Chal–Chal–Hal).

Оскільки дані методи спектроскопічного дослідження взаємодоповнюючі, отримані результати в даному підрозділі будуть обговорюватися спільно, в контексті кожної сполуки. Такий підхід сприяє комплексному вирішенню завдання інтерпретації отриманих спектрів. Як було відзначено, у зв'язку з перекриванням областей поглинання у деяких сполуках, яким можуть відповідати частоти коливання різних зв'язків, неможливо повноцінно інтерпретувати отримані результати.

Спектр КРС записаний для сульфідохлориду ренію **ReSCl**₃ представлено на рис. 3.14. До валентних коливань зв'язків (Re–Cl) віднесено слабкі лінії (_{сп}) 312, 317 та 325 см⁻¹ [116], а лінії 110_{cn} , середні (_{сер}) 126, 143, сильні (_с) 169 та 199 см⁻¹ із слабкими обертоновими лініями при 255, 285 та 401 см⁻¹ – до деформаційних коливань зв'язків (Cl–Re–Cl) (рис. 3.14) [117]. Слабкі лінії 230, 270 та 278 см⁻¹ віднесені до деформаційних коливань зв'язків (S–Re–S), а лінії 359_с, 378_{сл}, 387_{сл}, 415_{сл}, 444_{сл} та 463_с см⁻¹ – до валентних коливань зв'язків (Re–S) (рис. 3.14) [118].

Рисунок 3.14 – Спектр КРС сульфідохлориду ренію ReSCl₃.

Шляхом поєднання запропонованих кореляцій [117] між експериментальними частотами і силовими постійними для зв'язків металметал з емпіричними співвідношеннями [119, 120] між довжинами зв'язків та силовими сталими було розраховано значення v = 111,9 см⁻¹ для слабкого коливання (Re–Re), яке може бути пов'язане зі слабкою експериментальної лінією при 113 см⁻¹ (за даними розрахунків).

Для сполуки Se₄ReCl₆ було записано спектри IЧ та КРС (рис. 3.15, рис. 3.16). У спектрі КРС валентним коливанням зв'язків (Se–Se) у кільцевому

катіоні Se₄²⁺ відповідають дуже сильна (_{дс}) 237 та 256_с см⁻¹ лінії, а деформаційним – слабкі лінії 104, 120, 143 см⁻¹ у спектрі КРС та слабкі смуги 104, 122, 141 см⁻¹ у спектрі ІЧ [121]. Слабкі лінії при 299, 305, 311 та 328 см⁻¹ згідно [116] та сильна лінія 345 см⁻¹ у спектрі КРС відповідають валентним коливанням (Re–Cl) в октаедричному аніоні [ReCl₆]^{2–}, а деформаційним – слабкі лінії 160 та 188 см⁻¹ у спектрі КРС та 164_с і 183_{сер} см⁻¹ в ІЧ-спектрі [117]. У сильній та дуже широкій смузі ІЧ спектра із максимумом при 289 см⁻¹ наклалися валентні коливання (Se–Se) та (Re–Cl), а смуги 59_с та 89_{сер} см⁻¹ ми віднесли до торсійних коливань у катіоні Se₄²⁺ [122].

Рисунок 3.15 – Спектр КРС селенохлориду ренію ReSe₄Cl₆

Рисунок 3.16 – ІЧ-спектр селенохлориду ренію ReSe₄Cl₆

Через подібність структури та невеликі відмінності у складі триядерних кластерних халькогенхлоридів **Re₃S₇Cl₇** та **Re₃S₆SeCl₇** спостерігається повна

подібність їх ІЧ та КРС спектрів (рис. 3.17, рис. 3.18). У спектрі КРС до валентних коливань зв'язків (Re–Re) віднесена інтенсивна лінія в області 180 см⁻¹[117]; до валентних коливань зв'язків (Re–Cl) віднесені середні лінії 280, 287, 296, 314 та 320 см⁻¹ (рис. 3.17) [116]; лінії 101_{cep} , 115_{cep} , 127_c , 145_c , 160_c см⁻¹ віднесені до деформаційних коливань зв'язків (Cl–Re–Cl) (рис. 3.17) [117]. Валентним коливанням зв'язків (S–S) фрагментів μ -S₂^{2–} відповідають дуже сильна лінія 540 см⁻¹ з плечима (_{пл}) 532 та 525 см⁻¹ і середні лінії 460 та 403 см⁻¹ (рис. 3.17) [117, 123]. Лінії 345_c , 354_c , 388_{cep} , 390_{cep} см⁻¹ віднесені до валентних коливань зв'язків (Re–S), а дві сильні лінії 216 та 244 см⁻¹ – до деформаційних коливань цих зв'язків (рис. 3.17).

Рисунок 3.17 – Спектр КРС сульфідохлориду ренію Re₃S₇Cl₇.

Рисунок 3.18 – IЧ-спектр сульфідохлориду ренію Re₃S₇Cl₇

В ІЧ-спектрах кластерів **Re**₃**S**₇**Cl**₇ та **Re**₃**S**₆**SeCl**₇ (рис. 3.18) смуги поглинання $289_{n,n}$, $299_{d,c}$, 311_{cep} , та 317_{cep} см⁻¹ віднесені до валентних коливань зв'язків (Re–Cl). Смуги поглинання при 329_{cep} , $344_{d,c}$, $363_{c,n}$, 388_{c} см⁻¹ – до валентних коливань зв'язків Re–S, а дуже інтенсивні смуги 212, 220 та 246 см⁻¹ – до деформаційних коливань цих зв'язків (рис. 3.18). Смуги 556_{сеp}, 529_{сеp}, 462_{cep} , $441_{c,n}$, $402_{c,n}$ см⁻¹ відповідають валентним коливанням зв'язків (S–S).

ІЧ-спектр триядерного кластерного тіоселенохлориду ренію **Re₃S₅Se₂Cl₇**, що є ізоструктурним попереднім двом сполукам, має схожий характер (рис. 3.19). До валентних коливань зв'язків (Re–Cl) у ньому віднесено смуги при 286_c, $304_{\rm dc}$ см⁻¹. Валентним коливанням зв'язків (Re–S) відповідають смуги $335_{\rm dc}$, $381_{\rm cep}$ см⁻¹, а дуже інтенсивна широка смуга з максимумом в області 213 см⁻¹ і багатьма плечима віднесені до деформаційних коливань цих зв'язків (рис. 3.19). Валентні коливання зв'язків (S–S) проявляються при 546_{сл}, 464_{сер} та 443_{сл} см⁻¹. Смуга поглинання при 265_с см⁻¹ відповідає валентним коливанням зв'язків (Re–Se), а смуга при 364_{сер} см⁻¹ – зв'язкам (S–Se) (рис. 3.19).

Рисунок 3.19 – ІЧ-спектр селеносульфідохлориду ренію Re₃S₅Se₂Cl₇

Інтерпретуючи спектр КРС триядерного кластерного селенохлориду ренію **Re₃Se₇Cl₇** (рис. 3.20), лінію 185_{сер} см⁻¹ віднесено до валентних коливань

зв'язків (Re–Re). Валентним коливанням зв'язків (Re–Cl) відповідає лінія 350_{cep} см⁻¹. Дуже сильні лінії 300 та 310, а також область $240-250_{cep}$ см⁻¹, віднесені до валентних коливань зв'язків Se–Se в місткових лігандах μ -Se₂^{2–} (рис. 3.20) [124, 126]. Валентним коливанням зв'язків Re–Se у кластері відповідає область 280-290_{сл} см⁻¹ (рис. 3.20) [124].

Рисунок 3.20 – Спектр КРС селенохлориду ренію Re₃Se₇Cl₇

Для сполуки **Re₃S₇Br**₇ записані ІЧ-спектри та спектри КРС. До валентних коливань зв'язків (Re–Re) віднесено інтенсивну лінію 170 см⁻¹ [123] у спектрі КРС та сильну смугу 190 з плечем 171 см⁻¹ у спектрі ІЧ (рис. 3.21, рис. 3.22).

Рисунок 3.21- Спектр КРС сульфідоброміду ренію Re₃S₇Br₇

Рисунок 3.22 – IЧ-спектр сульфідоброміду ренію Re₃S₇Br₇

Валентним коливанням зв'язків (Re–Br) відповідають лінії 230_{c} та 250_{c} см⁻¹ (КРС) і смуги поглинання 228_{c} та 253_{c} см⁻¹ (IЧ), а лінії 115_{c} , $119_{пл}$, $141_{сл}$, $153_{сл}$ (КРС) і смуги $110_{пл}$, $122_{сл}$, $140_{сл}$, 153_{c} (IЧ) см⁻¹– деформаційним коливанням цих зв'язків (рис. 3.21, рис. 3.22). Валентні коливання зв'язків (S–S) фрагментів μ -S₂^{2–}, як і в ізоструктурних комплексах **Re₃S₇Cl₇**, **Re₃S₆SeCl₇** та **Re₃S₅Se₂Cl₇, чітко прослідковуються в області 525_{c}, 510_{cep} (КРС) та 583_{пл}, 543_{сп}, 511_{сп} см⁻¹ (ІЧ) (рис. 3.21, рис. 3.22) [124-125]. Лінії в області 290_{cep}, 321_{c}, 334_{cep}, 378_{сл}, 395_{cep} (КРС) та смуги в області 290_{cep}, 317_{сл}, 333_{c}, 353_{пл}, 378_{сл}, 394_{cn} (ІЧ) см⁻¹ однозначно відносяться до валентних коливань зв'язків (Re–S) (табл. 3.17, рис. 3.21, рис. 3.22).**

Для ізоструктурного селенового аналога **Re**₃**Se**₇**Br**₇ також інтерпретовані обидва спектри (рис. 3.23, 3.24). Лінію середньої інтенсивності 187 см⁻¹ у спектрі КРС та сильну лінію 180 см⁻¹ у спектрі ІЧ віднесено нами до валентних коливань зв'язків (Re–Re). Валентним коливанням зв'язків (Re–Br) відповідають лінії 194_{сл}, 202_{сер}, 220_{дс} см⁻¹ (КРС) та смуги поглинання 192_с, 200_{пл} та 226_с см⁻¹ (ІЧ), а лінії 114_{дс}, 139_с, 164_с (КРС) та смуги 111_с, 140_{дс}, 165_{пл} (ІЧ) см⁻¹– деформаційним коливанням цих же зв'язків (рис. 3.23, рис. 3.24). Лінії 303_{сер} та 320_{дс} (КРС) і смуги 320_{пл} та 330_{сер} (ІЧ) см⁻¹ віднесені до коливань зв'язків (Se–Se) у місткових лігандах μ -Se₂^{2–}. Валентні коливання зв'язків (Re–Se) у кластері зафіксовано при 234_с, 258_с (КРС) та 234_с, 248_{пл} (ІЧ) см⁻¹.

Рисунок 3.23 - Спектр КРС селеноброміду ренію Re₃Se₇Br₇

Рисунок 3.24 – IЧ-спектр селеноброміду ренію Re₃Se₇Br₇

У КРС та IЧ спектрах триядерного кластерного селеносульфідоброміду ренію складу **Re**₃Se₃S₄Br₁₃ та дещо відмінної структури [Re₃(μ_3 -S)(μ -S)₃(SeBr₂)₃Br₆]⁺Br⁻, ніж вищезгадані триядерні кластерні халькогенгалогеніди ренію загального складу **Re**₃Chal₇Hal₇ та будови [Re₃(μ_3 -Chal)(μ -Chal₂)₃Hal₆]⁺Hal⁻, у зв'язку із відсутністю лігандів μ -S₂²⁻ немає ліній та смуг, які відповідають коливанням зв'язків (S–S). Натомість, спостерігаються лінії та смуги поглинання, які відповідають коливанням зв'язків у молекуліліганді SeBr₂. Валентним коливанням зв'язків (S–Br) відповідають лінія 261_{дс} см⁻¹ (КРС) та смуги поглинання 265_{дс} і 94_с см⁻¹ (ІЧ), а до деформаційних коливань зв'язків (Вг–Se–Br) у молекули-ліганду SeBr₂ віднесені лінії 118_{сер}, 130_{сл} см⁻¹ (КРС) і смуги поглинання 117_с та 127_{сер}см⁻¹ (ІЧ). До валентних коливань зв'язків (Re–Re) віднесено лінію 188_{сл} см⁻¹ [8] у спектрі КРС та смугу 187_с см⁻¹ у спектрі ІЧ (рис. 3.25, 3.26). Валентним коливанням зв'язків (Re–Br) відповідають лінії 197_{сл}, 221_{пл} см⁻¹ (КРС) та смуги поглинання 199_с і 225_с см⁻¹ (ІЧ), а лінія 150_с (КРС) та смуга 153_{сл} (ІЧ) см⁻¹ – деформаційним коливанням цих зв'язків. Лінії 306_{сл}, 323_{сл}, 331_{сл}, 340_{сл}, 360_{сл}, 386_{сп} (КРС) і смуги 311_{пл}, 323_{сл}, 333_{сл}, 342_{сл}, 365_{сл}, 399_{сер} (ІЧ) см⁻¹ однозначно відносяться до валентних коливань зв'язків (Re–S). До валентних коливань зв'язків (Re–Se) у цій кластерній сполуці віднесено лінію 235_{пл} (КРС) та смугу поглинання 234_{сер} (ІЧ) см⁻¹.

Рисунок 3.25 – Спектр КРС селеносульфідоброміду ренію Re₃Se₃S₄Br₁₃

Рисунок 3.26 – IЧ-спектр селеносульфідоброміду ренію Re₃Se₃S₄Br₁₃

Триядерний селеносульфідобромід кластерний Re₃Se₃S₄Br₁₃ € чотириядерного структурним попередником кластерного селеносульфідоброміду **Re**₄Se₄S₄Br₁₆. Тому обидві сполуки містять одні й ті ж структурні фрагменти: зв'язки (Re-Re), ліганди µ₃-S, які координовані до трикутних кластерів Re₃, молекули-ліганди SeBr₂ та кінцеві ліганди Br⁻, які пов'язані з атомами ренію. У зв'язку з цим, інтерпретація спектрів цих сполук має багато спільного. Валентним коливанням зв'язків (Se-Br) у молекулах-лігандах SeBr₂ відповідають лінії 246_с, 265_{дс} см⁻¹ (КРС) та смуги поглинання 265_{лс}, 252_{лс} та 90_{сл} см⁻¹ (ІЧ), а деформаційним коливанням зв'язків (Br-Se-Br) у цих молекулах-лігандах відповідають лінії 114с, 123сер см⁻¹ (КРС) та смуги поглинання 118_{сер} і 130_{сл} см⁻¹ (ІЧ) (рис. 3.27, 3.28). До валентних коливань зв'язків (Re-Re) віднесено лінію 188_{сер} см⁻¹ [8] у спектрі КРС та смугу 187_с см⁻¹ у спектрі ІЧ (рис. 3.25, рис 3.26). Валентним коливанням зв'язків (Re–Br) відповідають лінії 200_{сл}, 228_{сер} см⁻¹ (КРС) та смуги поглинання 200_с, 220_{пл} см⁻¹ (ІЧ), а лінія 154_с (КРС) та смуга поглинання 153_{сер} (ІЧ) см⁻¹ деформаційним коливанням цих зв'язків. Лінії 333_{сер}, 351_{сл}, 396_{сл}, 474_{сл} (КРС) і смуги поглинання 329_{сл} та 470_{сл} (IЧ) см⁻¹ відносяться до валентних коливань зв'язків (Re-S) (рис. 3.27, рис 3.28). До валентних коливань зв'язків (Re-Se) у

цьому чотириядерному кластері відносяться лінія 235_{сер} (КРС) та смуга поглинання 234_с (ІЧ) см⁻¹.

Рисунок 3.27 – Спектр КРС селеносульфідоброміду ренію Re₄Se₄S₄Br₁₆

Рисунок 3.28 – IЧ-спектр селеносульфідоброміду ренію Re₄Se₄S₄Br₁₆

КРС-спектроскопічні ІЧ-Таким чином, та дослідження халькогенгалогенідних сполук ренію, отриманих при виконанні даної роботи, повній мірі підтвердили будову, було яку визначено методом y рентгеноструктурного аналізу, незважаючи на перекривання областей коливань деяких зв'язків. Так у спектрах сполук ReSCl₃ та ReSe₄Cl₆, в яких основним структурним фрагментом є октаедр ReCl₆, чітко ідентифікуються

частоти коливань (Re–Cl). В IЧ- та КС- спектрах триядерних кластерних халькогенгалогенідів також ідентифікуються всі структурні фрагменти: зв'язки (Re–Re) у металокластері, зв'язки (Chal–Chal) в перхалькогенідних місткових лігандах μ -Chal₂^{2–}, зв'язки (Re– μ_3 -Chal) та (Re–Chal), а також зв'язки (Re–Hal). У спектрах триядерного Re₃Se₃S₄Br₁₃ та чотириядерного Re₄Se₄S₄Br₁₆ кластерних селеносульфідобромідів проявилися частоти коливань зв'язків (Re–Re), (Re– μ_3 -S), (Re–Chal), (Re–Br) та коливання зв'язків у молекулі-ліганді SeBr₂ (табл. 3.17).

Сполука		v(Re–Re)	v(Re–Hal)	v(Re–Chal)	v(Chal-	δ(Hal–Re–	δ(Chal–Re–
					Chal)	Hal)	Chal)
ReSCl ₃	КРС		312, 317, 325	359, 378, 387, 415, 444, 463		110, 126, 143, 169, 199, 255, 285, 401	230,270, 278
ReSe Cl.	КРС		299, 305, 311, 328, 345, 164, 183		104, 120, 143, 237, 256		
	ІЧ		, 160 , 164,183, 188, 289		59, 89, 104, 122, 141, 289		
Re ₃ S ₇ Cl ₇ Re ₃ S ₆ SeCl ₇	КРС	180	280, 287, 296, 314, 320	Re–S: 216, 244, 345 _c , 354 _c , 388 _{cp} , 390 _{cp}	403,460, 525, 532,540	101 _{cp} , 115 _{cp} , 127 _c , 145 _c , 160 _c	
	ІЧ		289, 299, 311, 317	Re–S: 212, 220, 246, 329, 344, 363, 388,	402 _{сл} , 441 _{сл} ,462 _{ср} , 529 _{ср} , 556 _{ср} ,		
Re ₃ Se ₇ Cl ₇	КРС	185	350	280-290	240-250, 300, 310		
Re ₃ S ₇ Br ₇	КРС	170	115 _с , 119 _{пл} , 141 _{сл} , 153 _{сл} 230, 250	290 _{ср} , 321 _с , 334 _{ср} , 378 _{сл} , 395 _{ср}	510 _{cp} , 525c	115	
	ІЧ	190, 171	110 _{пл} ,122 _{сл} , 140 _{сл} , 153 _с 228 _с , 253 _с	290 _{ср} ,317 _{сл} , 333 _с , 353 _{пл} , 378 _{сл} , 394 _{сл} ,	583 _{пл} , 543 _{сл} ,511 _{сл}		

Таблиця 3.17 – Віднесення частот (см⁻¹) ІЧ- та КР- спектрів халькогенгалогенідних комплексів ренію.

Сполука		v (Re–Re)	v (Re–Hal)	v(Re–Chal)	v(Chal-	v(Chal-Hal)	δ(Hal–Chal–
					Chal)		Hal)
Re ₃ Se ₇ Br ₇	КРС	187	$114_{\rm oc}, 139_{\rm c},$	224 259	202 220		
			$104_{\rm c}, 194_{\rm сл}, 202_{\rm ср}, 220$	$234_{\rm c}, 238_{\rm c}$	$505_{cp}, 520_{oc}$		
	ІЧ	180	$111_{\rm c}, 140_{\rm oc},$				
			165пл, 192с,	234с, 248пл	320пл, 330		
			200пл , 226				
Re4S4Se4Br16	КРС	188 _{сл}	150 _с , 197 _{сл} , 221 _{пл}	Re–S:306 _{сл} ,		Se–Br: 261 _{oc}	Br–Se–Br : 118 _{ср} , 130 _{сл}
				323 _{сл} ,331 _{сл} ,			
				340сл, 360сл,			
				386сл			
				Re-Se:235			
	ІЧ	187 _c	153 _{сл} , 199 _с , 225 _с см	Re–S:311 _{пл} ,		Se–Br: 94 _{сл,} 265 _{ос} ,	Br–Se–Br : 117 _c , 127 _{cp}
				323 _{сл} , 333 _{сл} ,			
				342 _{сл} , 303 _{сл} ,			
				399_{cp}			
Re ₃ S ₄ Se ₃ Br ₁₃				$R_{-3}C_{-2}$			
	КРС	188 _{cp}	154 _с , 200 _{сл} , 228 _{ср}	333 351		Se–Br: 246 _c , 265 _{oc}	
				396 474			Br–Se–Br :
				Re-Se:			$114_{\rm c}, 123_{\rm cp}$
				$235_{\rm cm}$			
	ΙЧ	187 _c	153 _{ср} , 200 _с , 220 _{пл}	Re-S: 329_{cu} .		Se–Br: 265 _{ос} , 252 _{ос} , 90 _{сл}	
				470 _{c11}			Br-Se-Br:
				Re–Se: 234 _c			118ср,130сл
Re ₃ S ₅ Se ₂ Cl ₇	ІЧ		286 _c , 304 _{oc}	Re–S: 213,	S-S: 546 _{сл} ,		
				335 _{oc} , 381 _{cp}	464 _{ср} , 443 _{сл}		
				Re–Se: 265	S–Se: 364 _{cp}		

3.5. Каталітичні властивості продуктів гідролізу халькогенгалогенідів ренію у процесі гідрування органічних нітросполук

В якості модельного процесу для тестування каталітичних властивостей продуктів гідролізу синтезованих халькогенгалогенідів ренію обрано реакцію гідрування *м*-нітробензойної кислоти (*м*-НБК) до *м*-амінобензойної (*м*-АБК) кислоти згідно із схемою реакції (3. 33):

Процес гідрування проводили за вдосконаленою нами методикою, яку описано у розділі 2 п. 2.4. Об'єктами дослідження було обрано 5 синтезованих халькогенгалогенідів ренію, а саме: сульфідохлорид ренію ReSCl₃ полімерної будови, триядерні сульфідохлорид Re₃S₇Cl₇ та сульфідобромід Re₃S₇Br₇ ренію, триядерний Re₃Se₃S₄Br₁₃ та чотириядерний Re₄Se₄S₄Br₁₆ селеносульфідоброміди ренію.

Відомо, що процес гідрування нітросполук проводять у лужному, нейтральному та кислому середовищі [46]. Тому було використано дистильовану воду, 1М розчин гідроксиду натрію, 1М, 3М, 6М розчини хлоридної та 1М розчин бромідної кислот. Було встановлено, що у лужному середовищі із вихідних халькогенгалогенідів ренію утворювався перренат натрію, який не виявив каталітичної активності. У зв'язку з цим експерименти проводили у нейтральному та кислому середовищах.

На рис. 3.29 подано результати досліджень каталітичної активності продукту гідролізу сульфідохлориду ренію ReSCl₃.

Рисунок 3.29 – Каталітична активність продукту гідролізу ReSCl₃ у залежності від складу середовища

Як видно з рис. 3.29, найбільший вихід *м*-АБК (37%) спостерігався у середовищі дистильованої води. Варіювання концентрації хлоридної кислоти показало, що зі збільшенням її концентрації від 1М до 6М вихід *м*-АБК зменшується з 18 до 3%. Ймовірно, це пов'язано з пригніченням гідролізу сульфідохлориду ренію ReSCl₃, що перешкоджає утворенню достатньої кількості каталітично активної фази. В 1М розчині бромідної кислоти процес гідрування не відбувався.

На рис. 3.30 наведено результати дослідження каталітичної активності продуктів гідролізу триядерних халькогенгалогенідів ренію Re₃S₇Cl₇, Re₃S₇Br₇, та Re₃Se₃S₄Br₁₃. При використанні в якості каталізатора продукту гідролізу Re₃S₇Cl₇ вихід сульфідохлориду ренію максимальний м-АБК (47%) спостерігався у воді та незначний – (8%, 4%, 1%) у хлориднокислих розчинах зі збільшенням концентрації кислоти (від 1М до 6М). Ще більш низькі виходи цільового продукту (2%, 9%,) спостерігались при використанні у цій реакції продукту гідролізу сульфідоброміду ренію Re₃S₇Br₇ (рис 3.30 б), а в присутності продуктів гідролізу Re₃S₇Cl₇ та Re₃S₇Br₇ у середовищі 1М HBr процес гідрування не відбувається.

Найбільші виходи *м*-АБК спостерігалися при використанні в якості каталізатора продукту гідролізу триядерного селеносульфідоброміду ренію Re₃Se₃S₄Br₁₃. Як видно із рис. 3.30 в, у дистильованій воді вихід *м*-АБК досягає

73%, в хлориднокислих середовищах – 48%, 5%, 39% у 1M, 3M та 6M розчинах кислоти відповідно і максимальний вихід *м*-АБК (93%) – у середовищі 1М НВг.

Рисунок 3.30 – Вихід м-АБК у залежності від середовища при використанні в якості каталізаторів продуктів гідролізу Re₃S₇Cl₇ (a), $Re_3S_7Br_7$ (б)

Re₃Se₃S₄Br₁₃ (в).

Ha 3.31 результати дослідження каталітичних рис. наведено властивостей продукту гідролізу чотириядерного селеносульфідоброміду ренію Re₄Se₄S₄Br₁₆, який виявив значно меншу каталітичну активність у порівнянні з триядерним селеносульфідобромідом ренію Re₃Se₃S₄Br₁₃. Максимальний вихід цільового продукту (28%) спостерігався у 3М розчині хлоридної кислоти.

та

Рисунок 3.31 – Вихід *м*-АБК у залежності від середовища при використанні в якості каталізаторів продуктів гідролізу Re₄Se₄S₄Br₁₆.

Для ідентифікації продукту гідролізу триядерного тіоселеноброміду ренію Re₃Se₃S₄Br₁₃, який проявив найвищу каталітичну активність, поведені РФА-, КРС-, і EDX-дослідження. Отримані результати дозволили зробити наступні припущення: речовина знаходиться в рентгеноаморфному стані, про що свідчать дані РФА, тому структуру його визначити не вдалось; на основі результатів EDX-аналізу встановлено, що зразок містить лише реній і сірку в мольному співвідношенні 1:2; спектр КРС (рис. 3.32) продукту гідролізу показав наявність ліній валентних коливань зв'язків (Re-Re) (172 см⁻¹), деформаційних коливань зв'язків δ (S-Re-S) (234, 274, 283 см⁻¹) та v(Re-S). (210, 305, 317, 345, 375см⁻¹). Наведені дані вказують на те, що продукт гідролізу тіоселеноброміду ренію Re₃Se₃S₄Br₁₃ має валовий склад ReS₂.

Рисунок 3.32 – Спектр КРС продукту гідролізу Re₃Se₃S₄Br₁₃

Оскільки у процесі відновлення *м*-НБК у *м*-АБК найвищу каталітичну активність виявив продукт гідролізу триядерного селеносульфідоброміду ренію Re₃Se₃S₄Br₁₃, то його каталітичні властивості було досліджено також і у процесах гідрування *n*-нітробензойної кислоти (*n*-НБК) до *n*-амінобензойної кислоти (*n*-АБК) (3.34) та похідного *n*-НБК – етилового ефіру *n*-нітробензойної кислоти (ЕЕПНБК) до етилового ефіру *n*-амінобензойної кислоти (ЕЕПНБК) до етилового ефіру *n*-амінобензойної кислоти (З.35). Реакції проводили в 20%-них розчинах етилового спирту згідно з наступними схемами:

Вихід цільових продуктів, складав 68% для *n*-АБК та 76% для ЕЕПАБК.

3.6. Каталітичні властивості халькогенгалогенідів ренію у процесі рідкофазного гідрування хіноліну

Каталітичні властивості триядерного селеносульфідоброміду ренію $Re_3Se_3S_4Br_{13}$ було досліджено і в процесі рідкофазного гідрування хіноліну в розчині метанолу (3.35). При температурі 50°С та тискові 30 атм. за 4 години пройшов процес гідрування хіноліну до 1,2,3,4-тетрагідрохіноліну із виходом близьким до 100%. (рис. 3.35 а)

Рисунок 3.35 – Спектри ЯМР 1Н продуктів каталізу в CDCl₃: *a*-1,2,3,4тетрагідрохінолін; б – суміш 1,2,3,4-тетрагідрохіноліну та Nметилтетрагідрохіноліну

При температурі 150°С, та тискові 50 атм. за 24 години пройшов процес гідрування хіноліну до 1,2,3,4-тетрагідрохіноліну та метилтетрагідрохіноліну (3.37) у співвідношенні 2:1. (рис. 3.35 б).

Проведено порівняння каталітичної активності продукту гідролізу триядерного селеносульфідоброміду ренію $Re_3Se_3S_4Br_{13}$ з іншими відомими каталізаторами, які використовуються в процесі рідкофазного гідрування хіноліну (табл. 3.18). У порівнянні із нікелем Ренея та нікелем на Cr_2O_3 , кат. активність є вищою, а у порівнянні із платиновим каталізатором отримана нами сполука є більш «помірним» каталізатором.

Таблиця 3.18 – Порівняння каталітичної активності продуктів гідролізу Re₃S₄Se₃Br₁₃ з відомими каталізаторами

	Re ₃ S ₄ Se ₃ Br ₁₃	Ni Ренея	Ni/Cr ₂ O ₃	Pt
T, °C	50	65-80	140	22
р, атм.	30	130	200	3
τ, год.	4	0,5	4-5	2
Вихід (%)	100	96	84-88	100
Літ.		128	129	130

3.7. Висновки до розділу 3

Дослідження каталітичних властивостей синтезованих халькогенгалогенідів ренію у процесах рідкофазного гідрування м-НБК до м-АБК, *п*-НБК до *п*-АБК, а також ЕЕПНБК до ЕЕПАБК показало, що продукти гідролізу халькогенгалогенідів ренію у воді, хлоридно-, броміднокислих та спиртових розчинах перспективні для використання в якості ефективних каталізаторів цих процесів. Максимальний вихід цільових продуктів (м-АБК – 93%, п-АБК – 68%, ЭЭПНБК – 76%) зафіксовано при використанні в якості каталізатора продукту гідролізу триядерного селеносульфідоброміду ренію Re₃Se₃S₄Br₁₃. Результати даних РФА-, КРС-, і EDX-досліджень свідчать про те, що продукт гідролізу тіоселеноброміду ренію Re₃Se₃S₄Br₁₃ має валовий склад ReS₂. Як наслідок, можна припустити, що наявність у системі надлишкової бромідної кислоти у водному розчині, спрямовує процес гідролізу Re₃Se₃S₄Br₁₃ до утворення продукту з максимальною каталітичною активністю.

В процесі рідкофазного гідрування хіноліну в розчині метанолу при температурі 50°С, та тискові 30 атм. за 4 години гідрування хіноліну до 1,2,3,4тетрагідрохінолін відбувалось із виходом близьким до 100%. При температурі 150°С, та тиску 50 атм. за 24 години проходило гідрування хіноліну до суміші 1,2,3,4-тетрагідрохіноліну та метилтетрагідрохіноліну. В обох випадках вихід продуктів був близьким до 100%.

ВИСНОВКИ

У дисертаційній роботі вирішено наукову та практичну задачу щодо отримання ряду халькогенгалогенідних сполук ренію в рідких халькогенгалогенідних середовищах за відносно низьких температур (100 та 200°С), а також досліджено каталітичні властивості продуктів гідролізу одержаних комплексів в процесах гідрування органічних сполук.

1. Проведено реакції комплексоутворення у 44 системах на основі оксиду та сульфіду ренію(VII), ренієвої кислоти та рідких халькогенгалогенідніх середовищ з надлишком халькогену. Синтезовано 10 халькогенгалогенідів ренію, з яких 4 отримано вперше, інші - методами, відмінними від описаних в літературі.

2. Встановлено склад та будову синтезованих халькогенгалогенідів ренію:

структуру сульфідохлориду ReSCl₃ розшифровано вперше; комплекс є полімером із лінійними ланцюгами [{ReCl₂(α–Cl)}₂(α–S)₂];

– селенохлорид ReSe_4Cl_6 - моноядерний комплекс ренію(IV), що складається з аніону $[\text{ReCl}_6]^{2-}$ октаедричної та катіону Se_4^{2+} квадратної будови;

6 халькогенгалогенідів ренію загального складу Re₃Chal₇Hal₇ (де Chal
 S, Se; Hal – Cl, Br) – триядерні іонні кластерні комплекси [Re₃(µ₃-Chal)(µ-Chal₂)₃Hal₆]⁺Hal⁻; 2 з них отримано вперше;

– кристалічна структура вперше отриманого селеносульфідоброміду ренію складу Re₃Se₃S₄Br₁₃ описана як тривимірний пакет ізольованих триядерних кластерних катіон-аніонних комплексів [Re₃(µ₃-S)(µ-S)₃(SeBr₂)₃Br₆]⁺Br⁻;

вперше отриманий селеносульфідобромід Re₄Se₄S₄Br₁₆ має будову
 Re₄(µ₃-S)₄(SeBr₂)₄Br₈. Комплекс ізоструктурний до відомих ізольованих молекулярних чотириядерних кластерних халькогенгалогенідів ренію.

3. З'ясовано, що при температурі 100°С та надлишку халькогену переважно утворюються моноядерні халькогенгалогеніди ренію. Підвищення температури до 200°С сприяє утворенню три- та чотириядерних кластерних

халькогенгалогенідів з реній-халькогенідними остовами [Re₃Chal₇] та [Re₄Chal₄].

4. Виявлено, що, підвищення температури та концентрації селену, у реакційному середовищі, сприяє відновленню іонів ренію з переходом їх електронної конфігурації $5d^0$ в $5d^3$ стан, що обумовлено кращими відновними властивостями селену, у порівнянні із сіркою. У хлоридних системах утворюються як моноядерні ReSCl₃, ReSe₄Cl₆, так і триядерні кластерні сполуки, а у бромідних – лише кластерні (три- та чотириядерні).

5. . У хлоридних системах утворюються як моноядерні ReSCl₃, ReSe₄Cl₆, так і триядерні кластерні сполуки, а у бромідних – лише кластерні (три- та чотириядерні).

6. Показано, що продукти гідролізу синтезованих халькогенгалогенідів ренію можуть бути ефективними каталізаторами процесів рідкофазного гідрування *м*-НБК у *м*-АБК, *n*-НБК у *n*-АБК та ЕЕПНБК у ЕЕПАБК у воді, водних хлоридно-, броміднокислих та спиртових розчинах. Максимальний вихід цільових продуктів на каталізаторі – продукті гідролізу триядерного селеносульфідоброміду ренію Re₃Se₃S₄Br₁₃. Застосування даного каталізатора в процесі рідкофазного гідрування хіноліну забезпечило вихід цільових продуктів близьким до 100%.

СПИСОК ВИКОРИСТАНИХ ЛІТЕРАТУРНИХ ДЖЕРЕЛ

1. Дробот Д.В., Коршунов Б.Г., Ковачева С.Л. О сульфохлоридах рения. Журн. неорган. химии. **1972**, т. 17, № 1, 266-268.

2. Голубятникова Е.С., Федоров В.Е., Мажара А.П. Дослідження взаємодії галогенідів ренію с халькогенами. *Материалы 13 Всес. научн. студ. конф. Химия* (Новосибирск, апр. 1975 г.). Новосибирск. **1975**, 11.

3. Глухов И.А., Давидянц С.Б., Юнусов М.А., Емельянова Н.А. О механизме хлорирования семисернистого рения Re₂S₇. *Журн. неорган. химии.* **1961**. т. 6, № 6. 1264-1266.

4. Улько Н.В., Колесниченко В.Л. Взаємодія пентахлорида ренію з хлоридами сірки. *Журн. неорган. химии.* **1980**. т. 25, № 9. 2565-2567.

5. Опаловский А.А., Федоров В.Е., Лобков Е.У., Эренбург Б.Г. Новые галогенхалькогениды рения. *Журн. неорган. химии.* **1971**. т. 16, № 11. 3175-3177.

6. Fowles G.W.A., Hobson R.J., Rice D.A., Shanton K.J. Ambient Temperature Preparations of Thio-, Seleno- and Oxo-halides of Niobium, Tantalum, Molybdenum, Tungsten and Rhenium. J. Chem. Soc. Chem. Communs. **1976**. № 14, 552-553.

7. Kaucic V., Holloway J.H., Russel D.R. Synthesis and crystal structures of high-valent transition-metal chalcogenide fluorides and their derivatives. *J. Fluor. Chem.* **1983**. V. 23, N_{2} 5, 428.

8. Шеер М., Федин В.П., Федоров В.Е., Федотов М.А., Семянников П.П. О взаємодействии теллуридов ниобия, молибдена, вольфрама и рения с пентахлоридом фосфора. *Журн. неорган. химии.* **1987**. т. 32, № 7, 1769-1771.

9. Волков С.В., Колесниченко В.Л., Тимощенко Н.И. Синтез тио-, селенои теллурогалогенидных комплексов рения и молибдена в халькогенгалогенидных неводных сред. Сборник тезисов докладов V Всес. совещ. по химии неводних растворов неорганических и комплексных сполук. М.: Наука. **1985**. 26. 10. Тимощенко Н.И., Асланов Л.А., Рыбаков В.Б., Волков С.В., Колесниченко В.Л. Структура новых халькохлоридных комплексов рения. Сборник тезисов докладов V Всес. совещ. по кристаллохимии неорганических и координационных соединений. Черноголовка. **1989**. 146.

11. Johannes Beck, Antje Desgroseilliers, Klaus Müller-Buschbaum and Klaus-Jürgen Schlitt. Strukturbeziehungen zwischen Tetraselen (2+)-hexachlorometallaten: Synthese und Kristallstruktur von Se₄[ReCl₆] und Phasenumwandlung von Se₄[MCl₆] (M = Zr, Hf). Z. Anorg. Allg. Chem. **2002**. 628, No 5, 1145-1151.

12. Johannes Beck, Peter Biedenkopf und Klaus Müller-Buschbaum Synthese und Kristallstruktur von $(TeCl_3)_2MoCl_6und \beta$ - $(TeCl_3)_2ReCl_6$. *Z. Naturforsch.* **1996**. - 51b, 727-732.

13. J. Beck, K. Müller-Buschbaum. Synthesis and Crystal Structure of $Te_8[ReCl_6]$, containing the heavy homologue Te_8^{2+} of the chalcogen polycations S_8^{2+} and Se_8^{2+} .Z. Anorg. Allg. Chem. **1997**. 623, No 1-6, 409-413.

14. Тимощенко Н.И., Мисчанчук Т.Б. Синтез нових координационных соединений рения с хлоридами халькогенов. Сборник тезисов докладов XVII Всес. Чугаевского совещ. по химии комплексных сполук. Минск. **1990**. 97.

15. Susanne Rabe, Ulrich Müller. Die Kristallstruktur von SCl₃[Re₂Cl₉] und ihre Verwandtschaft zum RuBr₃-Typ. *Z. Anorg. Allg. Chem.* -**2000**. -626, № 4, 830-832.

16. Тимощенко Н.И., Колесниченко В.Л., Волков С.В., Словохотов Ю.Л., Стручков Ю.Т. Синтез и структура первого трехъядерного кластерного халькогалогенида рения. *Коорд. химия.* **1990**. т. 16, № 8. 1062-1066.

Beck J., Müller-Buschbaum K. Über Chalkogenidhalogenidedes Rheniums:
Syntheseund Kristal Istrukturen der Dreieck scluster Re₃E₇X₇ (E=S, Se; X=Cl, Br).
Z. Anorg. Allg. Chem. 1999. 625, № 7, 1212-1216.

18. Асланов Л.А., Волков С.В., Колесниченко В.Л., Мисчанчук Т.Б., Рыбаков В.Б., Тимощенко Н.И. Трехъядерные кластерные тиогалогениды рения (V) с ионной структурой. Укр. хим. журн. 1991. т. 57, № 7, 675-680.

19. Yuri V. Mironov, Thomas E. Albrecht-Schmitt, James A. Ibers.Syntheses and Characterizations of the New Tetranuclear Rhenium Cluster Compounds $\text{Re}_4(\mu_3-Q)_4(\text{TeCl}_2)4\text{Cl}_8$ (Q = S, Se, Te). *Inorg. Chem.* **1997**. 36, No 5, 944-946.

20. Schulz Lang E., Abram U., Struhle J. Synthese und Struktur von $\text{Re}_4(\mu_3-\text{Te})_4(\text{TeBr}_2)_4\text{Br}_8$. Z. anorg. und allg. Chem. **1996**. V. 622, No 2, 251-253.

21. Миронов Ю.В., Федоров В.Е. Четырехъатомные кластерные халькогенидные комплексы рения с кубановым ядром. *Изв. Акад. Наук, сер. хим.* **2002**. № 4, 529-539.

22. Gabriel J.C., Boubekeur K., Batail P. Molecular Hexanuclear Clusters in the System Rhenium-Sulfur-Chlorine: Solid State Synthesis, Solution Chemistry, and Redox Properties. *Inorg. Chem.* **1993**. V. 32, № 13, 2894-2900.

23. Fischer C., Fiechter S., Tributsch H., Reck G., Schultz B.Crystal Structure and Thermodynamic Analysis of the New Semiconducting Chevrel Phase $\text{Re}_6\text{S}_8\text{Cl}_2$. *Ber. Bunsenges Phys. Chem.* **1992**. 96, Nº 11, 1652-1658.

24. Федоров В.Е., Мищенко А.В., Колесов Б.А., Губин С.П., Словохотов Ю.Л., Стручков Ю.Т. Строение октаэдрического халькогенгалогенидного кластера рения Re₆Se₄Cl₁₀. *Изв. АН СССР. Сер. хим.* **1984**. № 9, 2159-2160.

25. Leduc L., Perrin A., Sergent M. Chalcohalogenures et chalcogenures a "clusters" octaedriques dans la chimie de basse valence du rhenium. *C. r. Acad. sci. Ser. 2.* **1983**. V. 296, № 13, 961-963, 965-966.

26. Yaghi O.M., Scott M.J., Holm R.H. Rhenium-Selenium-Chlorine Solid Phases: Cluster Excision and Core Substitution Reactions of Molecular Species. *Inorg. Chem.* **1992**. V. 31, № 23, 4778-4784.

27. Leduc L., Padiou J., Perrin A., Sergent M. Synthese et caracterisation d'un nouveau chalcohalogenure a clusters octaedriques de rhenium a caractere bidimensionnel: $\text{Re}_6\text{Se}_8\text{Cl}_2$. J. Less-Common Metals. **1983**. V. 95, No 1, 73-80.

28. Leduc L., Perrin A., Sergent M., Le Traon F., Pilet J.C., Le Traon A. Rhenium octahedral clusters: characterization of $Re_6Se_4Cl_{10}$ and the parent compound $Re_6S_4Br_{10}$. *Mater. Lett.* **1985**. V. 3, No 5-6, 209-216.

29. C. Fischer, N. Alonso-Vante, S. Fiechter, H. Tributsch, G. Reck, W. SchulzStructure and photoelectrochemical properties of semiconducting rhenium cluster chalcogenides: $\text{Re}_6X_8\text{Br}_2$ (X = S, Se). *J. Alloys Compd.* **1992**. V. 178, Nº 12, 305-314.

30. Опаловский А.А., Федоров В.Е., Лобков Е.У. Взаимодействие селенидов молибдена, вольфрама и рения с газообразным бромом. *Журн. неорган. химии*.
1971. т. 16, № 6, 1494-1496.

31. Speziali N.L., Berger H., Leicht G., Sanjines R., Chapuis G., Levy F. Single crystal growth, structure and characterization of the octahedral cluster compound $Re_6Se_8Br_2$. *Mater. Res. Bull.* **1988**. V. 23, No 11, 1597-1604.

32. Y. V. Mironov, J. A. Codyand J. A. Ibers. Hexachlorotetra μ_3 -chloro tetra- μ_3 -telluro-octohexarhenium(III). *Acta Cryst.* **1996**. C 52, 281-283.

33. Mironov Yuri V., Pell M.A., Ibers J.A.. The New Inorganic Ligands $TeCl_2$ and $TeBr_2$: Syntheses and Crystal Structures of $Re_6Te_6Cl_6(TeCl_2)_2$ and $[Re_6Te_8(TeBr_2)_6]Br_2$. *Inorg. Chem.* **1996**. 35, Nº 10, 2709-2710.

34. Mironov Yuri V., Pell M.A., Ibers J.A.. Te₆, $[Te_8Cl_{18}]^{2-}$, and $[TeCl_3]^-$: New Tellurium and Chlorotellurato Ligands in the Re₆ Solid-State Cluster Compounds Re₆Te₁₆Cl₁₈ and Re₆Te₁₆Cl₆. *Angew. Chem. Intern. Engl.* **1996**. 35, No 23-24, 2854-2856.

35. Fedin V.P., Fedorov V.E., Imoto H., Saito T.The first complex with TeI_2 ligands: synthesis and structure of $[Re_6Te_8(TeI_2)_6]I_2$. *Polyhedron*. **1997**. 16, No 10, 1615-1619.

36. Миронов Ю.В., Федоров В.Е. Кластерные теллурсодержащие комплексы рения. *Журн. структур. химии.* **-1999**. т. 40, № 6, 1183-1201.

37. Рыбаков В.Б., Асланов Л.А., Волков С.В., Колесниченко В.Л., Тимощенко Н.И. Рентгеноструктурное исследование хлорхалькогенидных комплексов рения. *Коорд. химия.* **1989**. т. 15, № 11, 1535-1539.

38. Глухов И.А., Давидянц С.Б., Емельянова Н.А., Юнусов М.А. О получении сульфидов и оксисульфидов из тиохлоридов рения. *Журн. неорган. химии.* **1963**. т. 8, № 1, 94-95.

39. Федин В.П., Губин С.П., Мищенко А.В., Федоров В.Е. Халькогенгалогенидные кластерные комплексы рения и молибдена. *Коорд. химия.* **1984**. т. 10, № 7, 901-906.

40. Колесов Б.А., Федоров В.Е., Мищенко А.В. Колебательные спектры и силовые постоянные кластерних соединений рения. *Коорд. химия.* **1984**. т. 10, № 7, 907-910.

41. Опаловский А.А., Федоров В.Е., Лобков Е.У. Новые селениды и теллуриды рения. *Изв. Сиб. отд. АН СССР. Сер. хим. н.* **1971**. Вып. 1, № 2, 144-145.

42. Опаловский А.А., Федоров В.Е., Халдояниди К.А. Хлорхалькогениды молибдена. Докл. АН СССР. **1968**. т. 182, № 5, 1095-1097.

43. Федоров В.Е., Наумов Н.Г., Миронов Ю.В., Вировец А.В., Артемкина С.Б., Брылев К.А., Яровой С.С., Ефремова О.А., Пэк У.Х. Неорганические координационные полимеры на основе халькоцианидных кластерних комплексов. *Журн. структур. химии.* -**2002**. т. 43, № 4. 721-736.

44. Barraclough C.G., Kew D.J. The infrared spectra of rhenium and osmium oxide tetrachlorides in the gas phase, condensed phase, and in solution. *Austral J. Chem.* **1972**. V. 25, 27-35.

45. Наумов Н.Г., Вировец А.В., Федоров В.Е. Октаэдрические кластерные халькоцианиды рения(III): синтез, строение, дизайн твердого тела. *Журн. структур. химии.* **2000**. т. 41, № 3, 609-637.

46. Накамото К. Инфракрасные спектры неорганических и координационных соединений. М.: Мир, **1966**. 411.

47. Ряшенцева М.А., Миначев Х.М. *Рений и его соединения в гетерогенном катализе*. М., Наука, **1983**. 246.

48. Juan Antonio Aliaga, Gabriel Alonso-Núñez, Trino Zepeda, Juan Francisco Araya, Pedro Felipe Rubio, Zaira Bedolla-Valdez, Francisco Paraguay-Delgado, Mario Farías, Sergio Fuentes, Guillermo González. Synthesis of highly destacked ReS2 layers embedded in amorphouscarbon from a metal-organic precursor. *Journal of Non-Crystalline Solids* 447 **2016**. 29-34.

49. D. Laurenti, K.T. Ninh Thi, N. Escalona, L. Massin, M. Vrinat, F.J. Gil. Llambi'as Support effect with rhenium sulfide catalysts. *Catalysis Today* 130 **2008**. 50-55.

50. Satoshi Kamiguchi, Satoko Takaku, Mitsuo Kodomari, Teiji Chihara.Variable catalytic behavior of Nb, Mo, Ta, W, and Re halide clusters: Isomerization of alkynes to conjugated dienes under nitrogen andhydrogenation to alkenes under hydrogen. *Journal of Molecular Catalysis A: Chemical* 260 **2006**. 43-48.

51. Satoshi Kamiguchi, Masaki Watanabe, Kunihiko Kondo, Mitsuo Kodomari, Teiji Chihara. Catalytic dehydrohalogenation of alkyl halides by Nb, Mo, Ta, andW halide clusters with an octahedral metal framework and by a Rechloride cluster with a triangular metal framework. *Journal of Molecular Catalysis A: Chemical* 203 **2003**. 153-163.

52. Белоусов В.М., Пальчевская Т.А., Волков С.В., Колесниченко В.Л., Богутская Л.В., Шаравская С.П. Каталические свойства трехъдерных м-ниробензойной тиокомплексов рения гидрировании В кислоты. Теоретическая и экспериментальная химия. 1992, т.28, № 3, 239-242.

53. *Руководство по неорганическому синтезу: в 6 т.* Под ред. Г. Брауэра. Пер. с нем. М.: Мир, **1985**. т.5, 1718.

54. *Руководство по неорганическому синтезу: в 6 т.* Под ред. Г. Брауэра. Пер. с нем. М.: Мир, **1985**. т.5, 1735.

55. *Руководство по неорганическому синтезу: в 6 т.* Под ред. Г. Брауэра. Пер. с нем. М.: Мир, **1985**. т.5, 1721.

56. *Руководство по неорганическому синтезу: в 6 т.* Под ред. Г. Брауэра. Пер. с нем. М.: Мир, **1985**. т.5, 1718.

57. Barton R.C. The dissociation of sulfur monochloride vapour / R.C. Barton, M.
Yost. J. Am. Chem. Soc. 1935. T.57, № 2, 307-310.

58. Meyer J. Über die Zersetzung der Selenbromwasserstoffsäure und ihrer Salze. J. Meyer, R. Wurm. *Z. anorg. und allg. Chem.* **1930**. т.190, 90-94.

59. NagyFelsobski E. Photoelectron spectra of sulphur dibromide and selenium dibromide / E. Nagy-Felsobski, J.B. Peel. Chem. Phys. **1980**. ⊤.45, № 2, 189-194.

60. Рачинский Ф.Ю. Техника лабораторных работ. Ф.Ю. Рачинский,
М.Ф. Рачинская [под ред. проф. Д.П. Добычина]. Л.: Химия, 1982. 432.

61. Степаненко І.М. *Синтез і властивості халькогенхлоридних сполук родію*. автореф. дис. на здобуття наук. ступеня канд. хім. наук: спец. 02.00.01 «Неорганічна хімія» / І.М. Степаненко. К., **2002**. 20.

62. Пат. 85704 Україна, МПК С01G 55/00. Спосіб одержання селеноброміду родію Rh₂Se₉Br₆. Волков С.В., Гладишевський Р.Є., Янко О.Г.[та ін.]: заявник і патентовласник Інститут загальної та неорганічної хімії ім. В. І. Вернадського, Львівський національний університет ім. І. Франка. и **2013** 07456; заявл. 12.06.2013; опубл. 25.11.2013, Бюл. № 22.

63. Брусиловец А.И. Анаэробные методы химического эксперимента: Учебное пособие. А.И. Брусиловец. К.: КГУ, **1982**. 83.

64. SRM 640b: Silicon Powder 2θ/dSpacingStandardforXrayDiffraction/ National Institute of Standard sand Technology, U.S. Department of Commerce: Gaithersburg, MD, **1987**.

65. Advances in powder diffraction pattern indexing: NTREOR09 / A. Altomare,
G. Campi, C. Cuocci [et al.]. J. Applied Crystallography. 2009. V. 42, Pt. 5,768-775.
66. SRM 676: Alumina Internal Standard for Quantitative Analysis by X-ray
Powder Diffraction / National Institute of Standards and Technology, U.S.
Department of Commerce: Gaithersburg, MD, 2005.

67. STOE WinXPOW, version 3.03. Stoe & Cie GmbH, Darmstadt, Germany,2010.

68. L.M. Gelato. STRUCTURE TIDY a computer program to standardize crystal structure data.L.M. Gelato, E. Parthé. *J. Appl. Crystallogr.* **1987**. 20, 139-143.

69. Kraus W. PowderCell for Windows (version 2.4) / W. Kraus, G. Nolze. Berlin: Federal Institute for Materials Research and Testing, March **2000**.

70. Young R.A. The Rietveld Method / R.A. Young (editor). IUCr Monographs of Crystallography. № 5. International Union of Crystallography, Oxford University Press. **1993**. 298.

71. Rodriguez-Carvajal J. Recent developments of the program FULLPROF /
J. RodriguezCarvajal. Commission on Powder Diffraction (IUCr). Newsletter. 2001.
T. 26, 12-19.

72. Roisnel T. WinPLOTR: a Windows Tool for Powder Diffraction Patterns Analysis / T. Roisnel, J. Rodriguez Carvajal. *Materials Science Forum.* 2001. T.378-381, 118-123.

73. L.M. Gelato. STRUCTURE TIDY a computer program to standardize crystal structure data.L.M. Gelato, E Parthé. *J. Appl. Crystallogr.* **1987**. 20, 139-143.

74. Brandenburg K. DIAMOND. Visual Crystal Structure Information System, Version 3.2g / K. Brandenburg. Crystal Impact, Bonn, Germany **2011**.

75. APEX2 (version 1.08), SAINT (version 7.03), SADABS (version 2.11).Madison (WI, USA): Bruker AXS Inc., 2004.

76. Субботин В.В., Янко О.Г., Харькова Л.Б., Николенко А.С., Волков С.В. Семейство триядерних кластерних халькогенгалогенидов рения. *Укр. хим. журн.* **2015**. т. 81, № 3, 3-7.

77. Янко О.Г., Харькова Л.Б., Баранец С.А., Фокина З.А., Александрова Н.Г., Машкова Э.М., Субботин В.В. Синтез и строение халькогенгалогенидов платиновых и редких металлов. *Укр. хим. журн.* **2015**. т. 81, № 11, 61-67.

78. Субботин В.В., Демченко П.Ю., Янко О.Г., Харькова Л.Б., Волков С.В., Гладышевский Р.Е., Николенко А.С. Комплексоутворення в системах ReSeHal (Hal Cl, Br). *Укр. хим. журн.* **2015**. т. 81, № 12, 87-91.

79. Volkov S.V., Subbotin V.V., Demchenko P.Yu., Gladyshevskii R.E., Yanko O.G., Kharkova L.B. On the preparation, structure and bonding ReSCl₃. *Chem. Met. Alloys.* **2015**. 8, 43-54.

80. D.R. Taylor, J.C. Calabrese, E.M. Larsen. Crystal structure of niobium tetrachloride. *Inorg.Chem.* 16, **1977**. 721-722.

- 81. P. Frere. Ann. Chim. Paris. 7 1962. 85.
- 82. H.-G. von Schnering, H. Wöhrle. Angew. Chem. 75 1963. 684.
- 83. R.E. McCarley, B.A. Torp. *Inorg. Chem.* 2 1963. 540-546.
- 84. A. Meerschaut. Acta Crystallogr. 62 2006. i131-i132.

85. P. Villars, K. Cenzual (Eds.), *Pearson's Crystal Data: Crystal Structure Database for Inorganic Compounds*, Release 2014/15, ASM International, Materials Park, Ohio, USA, **2014**.

E.A. Pisarev, D.V. Drobot, I.V. Makarchuk. *Russ. J. Inorg. Chem.* 27 **1982**. 10-14.

87. G. Bergerhoff, K. Brandenburg, in: E. Prince (Ed.). *International Tables for Crystallography*, Vol. C, Ch. 9.4, Kluwer Academic Publishers, Dordrecht, **2004**. 778-789.

88. R.D. Shannon, Acta Crystallogr. A 32, 1976. 751-767.

89. E.V. Johnstone, F. Poineau, P.M. Forster. Inorg. Chem. 51, 2012. 8462-8467.

90. A. Günther, A. Isaeva, A.I. Baranov, M. Ruck. *Chem. Eur.* J. 17, **2011**. 6382-6388.

91. M. Sokolov, H. Imoto, T. Saito, V. Fedorov. Polyhedron 17, 1998. 3735-3738.

92. H.F. Franzen, W. Hönle, H.-G. von Schnering. Z. Anorg. Allg. Chem. 497, **1983**. 13-20.

93. P.J. Schmidt, G. Thiele. Z. Anorg. Allg. Chem. 625, 1999. 1056-1058.

94. J. Rijnsdorp, F. Jellinek, J. Solid State Chem. 28, 1979. 149-156.

95. R. A. Young (ed.). The Rietveld Method. International Union of Crystallography. *Oxford University Press* **1993**. 298.

96. Субботин В.В., Янко О.Г., Харькова Л.Б., Николенко А.С., Волков С.В. Семейство трехъдерных кластерных халькогенгалогенидов рения. Укр. хим. журн. 2015. т. 81, № 3, 3-7.

97. Янко О.Г., Харькова Л.Б., Баранец С.А., Фокина З.А., Александрова Н.Г., Машкова Э.М., Субботин В.В. Синтез и строение халькогенгалогенидов платинових и редких металлов. Укр. хим. журн. **2015**. т. 81, № 11, 61-67.

98. Субботин В.В., Демченко П.Ю., Янко О.Г., Харькова Л.Б., Волков С.В., Гладышевский Р.Е., Николенко А.С. Комплексообразование в системах ReSeHal (Hal Cl, Br). *Укр. хим. журн.* **2015**. т. 81, № 12, 87-91.

99. Волков С.В., Субботин В.В., Харькова Л.Б., Янко О.Г. Семейство халькогенгалогенидных трехъдерних кластеров рения. XIX Українська конференція з неорганічної хімії за участю закордонних учених. Одеса, 7-11 вересня **2014** р. Тези доповідей. 36.

100. Subbotin V., Demchenko P. Y., Yanko O., Kharkova L., Gladyshevskii R. E., Volkov S. Synthesis, Structure and Some Catalytic Properties of the New Trinuclear Rhenium Cluster Compound Re₃Se₃S₄Br₁₃ *Solid State Phenomena*, **2017**, 257, 227-230

101. J.-C.P. Gabriel, K. Boubekeur, S. Uriel, P. Batail, Chemistry of hexanuclear rhenium chalcohalide clusters. *Chem. Rev.* 101 **2001**. 2037-2066.

102. Волков С.В., Субботин В.В., Демченко П.Ю., Янко О.Г., Харькова Л.Б., Гладышевский Р.Е. Синтез и строение четырехъядерного кластерного селеносульфидобромида рения Re₄Se₄S₄Br₁₆. *Укр. хим. журн.* **2015**. т. 81, № 9, 7-11.

103. Волков С.В., Гладишевський Р.Є., Янко О.Г., Харькова Л.Б., Демченко П.Ю., Суботін В.В., Машкова Е.М., Ніколенко А.С. Спосіб одержання чотириядерного кластерного селеносульфідоброміду ренію Re₄Se₄S₄Br₁₆ Патент.

104. О.Г. Янко, П.Ю. Демченко, Л.Б. Харькова, В.В. Суботін, С.В. Волков,
Р.Є. Гладишевський Чотириядерний кластерний селеносульфідобромід ренію
Re₄Se₄S₄Br₁₆. XV Наукова конференція «Львівські хімічні читання-2015». Львів,
2015. Збірн. наук. праць. Н49.

105. P.F. Weck, E. Kim, F. Poineau. *Inorg. Chem.* 48, **2009**. 6555-6558.

106. C.M. Fang, G.A. Wiegers, C. Haas, R.A. de Groot, J. Phys.: Condens. Matter 9 (**1997**) 4411-4424.

107. S. Tongay, H. Sahin, C. Ko, Nat. Commun. 5 (2014) 3252 (6 p.).

108. D. Çakir, H. Sahin, F.M. Peeters, Phys. Chem.Chem. Phys. 16, 2014. 16771-16779.

109. R.F.W. Bader, Atoms in Molecules, A Quantum Theory, Clarendon Press,Oxford, **1994**.

110. I. Veremchuk, T. Mori, Yu. Prots, J. Solid State Chem. 181, 2008. 1983-1991. 111. S. Raub, G. Jansen. *Theor. Chem. Acc.* 106, **2001**. 223-232.

Bader R. F. W., Atoms in Molecules, A Quantum Theory, Clarendon Press,Oxford. 1994.

113 Kohout M., DGrid, version 4.6. Radebeul (Germany). 2011.

Baranov A. I., Direct space topological partitionings with DGrid and Elk.CECAM Tutorial, Lausanne (Switzerland). 2011.

115 Perrin C., Chevrel R., Sergent M., C. R. Seances Acad. Sci., Ser. C. 1975.281, 2325.

116 . Kelly D.A., Good M.L. Visible and far-infrared spectral studies of tetrahedral and octahedral complexes in non-aqueous solvent systems-II Far-infrared spectra of the hexahalo complexes of Re(IV), Os(IV), Ir(IV) and Pt(IV). *Spectrochim. acta.* **1972.** V. 28A, N_{2} 8, 1529-1536.

117 .Hajba L., Mink J., Kühn F.E., Goncalves I.S. Raman and infrared spectroscopic and theoretical studies of dinuclear rhenium and osmium complexes, $M_2(O_2CCH_3)_4X_2$ (M = Re, Os; X = Cl, Br). *Inorg. Chim. Acta.* **2006**. V. 359, No 15, 4741-4756.

118 . Cristiani F., Devillanova F.A., Diaz A., Verani G. Far-infrared spectra of OsS_6 , $OsSe_6$, $OsCl_2S_4$ and OsO_2S_4 chromophores. *Spectrochim. acta.* **1983**. V. 39A, No 11, 955-957.

119 . . Miskowski V.M., Dallinger R.F., Christoph G.G., Morris D.E., Spies G.H., Woodruff W.H. Assignment of the rhodium-rhodium stretching frequency in $Rh_2(O_2CCH_3)_4L_2$ complexes and the crystal and molecular structure of $[C(NH_2)_3]_2[Rh(O_2CCH_3)_4Cl_2]$. Relationship between vibrational spectra and structure. *Inorg. Chem.* **1987**. 26 (13), 2127–2132.

120 . Conradson S.D., Sattelberger A.P., Woodruff W.H. X-ray absorption study of octafluorodirhenate(III): EXAFS structures and resonance Raman spectroscopy of octahalodirhenates. *J. Am. Chem. Soc.* **1988**. 110 (4), 1309–1311.

121 . Субботин В.В., Демченко П.Ю., Янко О.Г., ХарьковаЛ.Б., Волков С.В.,Гладышевский Р.Е., Николенко А.С. Комплексообразование в системах Re–Se–Hal (Hal – Cl, Br). Укр. хим. журн. **2015.** 81, № 12. 87–91.

122 . Hendra P.J., Park P.J.D. The vibrational spectra of sulphur and selenium monohalides. *J. Chem. Soc. A* **1968**. 908-911.

123 . Колесов Б.А., Федин В.П., Кузьмина О.А., Федоров В.Е. Исследование би- и триядерных тиохлоридных комплексов молибдена методом колебательной спектроскопии. *Координац. химия.* **1987.** 13, №6, 771–777.

124 . Субботин В.В., Янко О.Г., Харькова Л.Б., Николенко А.С., Волков С.В. Семейство трехъядерных кластерних халькогенгалогенидов рения. *Укр. хим. журн.* **2015.** 81, № 3, 3–7.

125 Giolando D.M., Papavassiliou M., Pickardt J., Rauchfuss T.B., Steudel R. Synthesis and Structure of $1,4-[(RCp)_2Ti]_2Se_4$ and Its Application to the "Chalcogenospecific" Synthesis of $1,2,5,6-Se_4S_4$. *Inorg. Chem.* **1988.** V. 27, No 15, 2596-2600.

126 . Баранец С.А., Фокина З.А., Демченко П.Ю., Янко О.Г., Николенко А.С., Харькова Л.Б., Гладышевский Р.Е., Волков С.В. Изоструктурные селеногалогениды родия Rh₂Se₉Hal₆ (Hal – Cl, Br). *Укр. хим. журн.* **2013.** 79, № 9, 3–9.

127. Т.С. Но, Q. Shen, J.M. McConnachie, C.E. Kliewer Kinetic characterization of unsupported ReS₂ as hydroprocessing catalyst. *Journal of Catalysis* 276 **2010** 114–128. Б.М. Богословский, З.С. Казакова. Скелетные катализаторы, их свойства и применение в органической химии. *ГНТИ ХимЛит* М., **1957**. 114

129. И. Губен. Методы органической химии. *ГНТИ ХимЛит*, М. – Л., **1949**. 831 130. Мнджоян А.Л. Синтезы гетероциклических соединений. 1,2,3,4тетрагидрохинолин Выпуск 4 *Изд-во АН АрмССР*, Ереван, **1959.** 80 додаток а

Рисунок А.1 – ТЕМ-мікрофотографія ReSCl₃

Рисунок А.2 – ТЕМ-мікрофотографія Re₄S₄Se₄Br₁₆.

Рисунок А.3 – ТЕМ-мікрофотографія Re₃S₄Se₃Br₁₃.

Додаток Б СПИСОК ПУБЛІКАЦІЙ ЗА ТЕМОЮ ДИСЕРТАЦІЇ

1. Subbotin V., Demchenko P. Y., Yanko O., Kharkova L., Gladyshevskii R. E., Volkov S. Synthesis, Structure and Some Catalytic Properties of the New Trinuclear Rhenium Cluster Compound Re₃Se₃S₄Br₁₃ *Solid State Phenomena*, **2017**, 257, 227-230 (*Особистий внесок здобувача*: синтез сполуки, участь в обговоренні результатів та підготовка рукопису статті).

2. S.V. Volkov, O.G. Yanko, V. Subbotin, P.Yu. Demchenko, R.E. Gladyshevskii, L.B. Kharkova On the preparation, structure and bonding of ReSCl₃ *Chem. Met. Alloys.* 2015. 8, \mathbb{N} 3, 13–24. (*Особистий внесок здобувача*: синтез сполуки, запис спектрів КРС, їх інтерпретація, участь в обговоренні результатів та підготовка рукопису статті)

3. M. A. Shestopalov, Yu. V. Mironov, V. V. Subbotin, and S. V. Volkov The complex [$\{Re_3(\mu_3-S)(\mu-S_2)_3\}Br_6$]Br: a novel method of synthesis and the reaction with KF•HF *Russian Chemical Bulletin*, **2014**. Vol. 63, No. 12, 2625–2629. (*Особистий внесок здобувача*: участь в обговоренні результатів та підготовка рукопису статті)

4. О.Г. Янко, Л.Б. Харькова, **В.В. Субботин**, А.С. Николенко, С.В. Волков Семейство трехъядерных кластерных халькогенгалогенидов рения. *Укр. хим. журн.* **2015**. 81, № 3, 3–7. (*Особистий внесок здобувача*: синтез сполук, запис ІЧ-спектрів та спектрів КРС, їх інтерпретація, участь в обговоренні результатів та підготовка рукопису статті)

5. С.В. Волков, О.Г. Янко, П.Ю. **В.В.** Субботин, Демченко, Л.Б. Харькова, Р.Е. Гладышевский Синтез и строение четырехъядерного кластерного селеносульфидобромида рения Re₄Se₄S₄Br₁₆ *Укр. хим. журн.* 2015. 81, № 9, 7–11. (*Особистий внесок здобувача*: синтез зразків, запис ІЧ-спектрів та спектрів КРС, їх інтерпретація, участь в обговоренні результатів та підготовка рукопису статті)

О.Г. Янко, Л.Б. Харькова, С.А. Баранец, З.А. Фокина, Н.Г. Александрова, Э.М. Машкова, В.В. Субботин Синтез и строение халькогенгалогенидов платиновых и редких металлов. Укр. хим. журн. 2015.
 81, №11. (Особистий внесок здобувача: синтез зразків, участь в обговоренні результатів та підготовка рукопису статті)

7. С.В. Волков, Р.Е. Гладышевский, О.Г. Янко, Л. Б. Харькова, E.M. П.Ю. Демченко, В.В.Суботін, Машкова, A.C. Ніколенко Спосіб кластерного селеносульфідоброміду одержання чотириядерного ренію Re₄Se₄S₄Br₁₆. Пат. 111360 Україна, МПК С01G 47/00: заявник і патентовласник Інститут загальної та неорганічної хімії ім. В. І. Вернадського, Львівський національний університет ім. І. Франка. – и 2016 04302; заявл. 19.04.2016; опубл. 10.11.2016, Бюл. № 21.

8. **V. Subbotin**, O. Yanko, P. Demchenko, L. Kharkova, R. Gladyshevskii, S. Volkov Synthesis, structure and some catalytic properties of the new trinuclear rhenium cluster compound Re₃Se₃S₄Br₁₃. The XX-th International Conference on Solid Compounds of Transition Elements, April 11-15 **2016**, Zaragoza (Spain). Book abstracts. 39, (стендова доповідь).

9. S.V. Volkov, V. Subbotin, L.B. Kharkova, O.G. Yanko Trinuclear chalcogen-halide clusters of rhenium. 3rd International Conference on Research Frontiers in Chalcogen Cycle Science & Technology (G16), 27-28 of May, 2013 : abstracts. – Delft, the Netherland 2013. 40, (стендова доповідь).

10. / О.Г. Янко, П.Ю. Демченко, Л.Б. Харькова, **В.В. Суботін**, С.В. Волков, Р.Є. Гладишевський Чотириядерний кластерний селеносульфідобромід ренію Re₄Se₄S₄Br₁₆. XV Наукова конференція «Львівські хімічні читання-2015». Львів, **2015**. Збірн. наук. праць. Н49, (стендова доповідь).

11. О.Г. Янко, Л.Б. Харькова, **В.В. Субботин** Семейство халькогенгалогенидных трехъядерных кластеров рения. XIX Українська конференція з неорганічної хімії за участю закордонних учених, 7-11 вересня, 2014 р., м. Одеса. Тези доп. Одеса, **2014**. 36, (стендова доповідь).

12. В.В. Суботін, О.Г. Янко, П.Ю. Демченко, Л.Б. Харькова, С.В. Волков, Р.Є.Гладишевський Структура та зв'язок у сульфідохлориді ренію ReSCl₃. XV Наукова конференція «Львівські хімічні читання-2015». – Львів, **2015**. Збірн. наук. праць. Н48, (стендова доповідь).

13. **В.В.** Суботін, О.Г. Янко, Л.Б.Харькова, С.О.Баранець Комплексоутворення у системах Re–Chal–Hal. XX Української конференції з неорганічної хімії за участю закордонних учених до 100- річчя заснування НАН України. Тез. доп. (XX UCIC). Дніпро, Україна, 17-20 вересня **2018**. 77, (стендова доповідь).